Publications by authors named "Kieran J Clarke"

We compared the activity of complex 1, complex 2, and the expression of the complex 1 subunit, NDUFA9, in isolated brown adipose tissue mitochondria from wild type and mitochondrial uncoupling protein 1 (UCP1) knockout mice. Direct spectrophotometric measurement revealed that complex 2 activity was similar, but complex 1 activity was greater (~2.7 fold) in isolated mitochondria from wild-type mice compared to UCP1 knockout mice, an observation endorsed by greater complex 1 subunit expression (NDUFA9) in mitochondria of wild-type mice.

View Article and Find Full Text PDF

Glycerol-3-phosphate is an excellent substrate for FAD-linked mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in brown adipose tissue mitochondria and is regularly used as the primary substrate to measure oxygen consumption and reactive oxygen consumption by these mitochondria. mGPDH converts cytosolic glycerol-3-phosphate to dihydroxyacetone phosphate, feeding electrons directly from the cytosolic side of the mitochondrial inner membrane to the CoQ-pool within the inner membrane. mGPDH activity is allosterically activated by calcium, and when calcium chelators are present in the mitochondrial preparation medium and/or experimental incubation medium, calcium must be added to insure maximal mGPDH activity.

View Article and Find Full Text PDF

Over several years we have provided evidence that uncoupling protein 1 (UCP1) is present in thymus mitochondria. We have demonstrated the conclusive evidence for the presence of UCP1 in thymus mitochondria and we have been able to demonstrate a GDP-sensitive UCP1-dependent proton leak in non-phosphorylating thymus mitochondria. In this chapter, we show how to detect UCP1 in mitochondria isolated from whole thymus using immunoblotting.

View Article and Find Full Text PDF

We previously demonstrated that uncoupling protein 1 activity, as measured in isolated brown adipose tissue mitochondria (and as a native protein reconstituted into liposome membranes), was not activated by the non-flippable modified saturated fatty acid, glucose-O-ω-palmitate, whereas activity was stimulated by palmitate alone (40 nM free final concentration). In this study, we investigated whether fatty acid chain length had any bearing on the ability of glucose-O-ω-fatty acids to activate uncoupling protein 1. Glucose-O-ω-saturated fatty acids of various chain lengths were synthesized and tested for their potential to activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, and the results were compared with equivalent non-modified fatty acid controls.

View Article and Find Full Text PDF

We have previously shown that uncoupling protein 1 is present in thymus and has a role in T-cell development. As reactive oxygen species have been implicated in T-cell development, we set out to determine whether uncoupling protein 1 had the potential to regulate reactive oxygen species production in mitochondria isolated from thymus. This was achieved by inhibiting proton leak through uncoupling protein 1 using the purine nucleotide GDP and through ablation of uncoupling protein 1, measuring the amplex red sensitive reactive oxygen species production by mitochondria.

View Article and Find Full Text PDF

In this study we show that mitochondrial uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and thymus mitochondria can be ubiquitinylated and degraded by the cytosolic proteasome. Using a ubiquitin conjugating system, we show that UCP1 can be ubiquitinylated in vitro. We demonstrate that UCP1 is ubiquitinylated in vivo using isolated mitochondria from brown adipose tissue, thymus and whole brown adipocytes.

View Article and Find Full Text PDF

We provide evidence that ablation or inhibition of, uncoupling protein 1 increases the rate of reactive oxygen containing species production by mitochondria from brown adipose tissue, no matter what electron transport chain substrate is used (succinate, glycerol-3-phosphate or pyruvate/malate). Consistent with these data are our observations that (a) the mitochondrial membrane potential is maximal when uncoupling protein 1 is ablated or inhibited and (b) oxygen consumption rates in mitochondria from uncoupling protein 1 knock-out mice, are significantly lower than those from wild-type mice, but equivalent to those from wild-type mice in the presence of GDP. In summary, we show that uncoupling protein 1 can affect reactive oxygen containing species production by isolated mitochondria from brown adipose tissue.

View Article and Find Full Text PDF

Choline is a quaternary amino cationic organic alcohol that is oxidized to betaine in liver and kidney mitochondria. Betaine acts as an intracellular organic osmolyte in the medulla of the kidney. Evidence is provided that kidney mitochondria have a choline transporter in their inner membrane.

View Article and Find Full Text PDF