Publications by authors named "Kier A"

Ad libitum-fed diets high in fat and carbohydrate (especially fructose) induce weight gain, obesity, and nonalcoholic fatty liver disease (NAFLD) in humans and animal models. However, interpretation is complicated since ad libitum feeding of such diets induces hyperphagia and upregulates expression of liver fatty acid binding protein (L-FABP)-a protein intimately involved in fatty acid and glucose regulation of lipid metabolism. Wild-type (WT) and L-fabp gene ablated (LKO) mice were pair-fed either high-fat diet (HFD) or high-fat/high-glucose diet (HFGD) wherein total carbohydrate was maintained constant but the proportion of glucose was increased at the expense of fructose.

View Article and Find Full Text PDF

Infectious diseases continue to be a significant cause of morbidity and mortality, and although efficacious vaccines are available for many diseases, some parenteral vaccines elicit little or no mucosal antibodies which can be a significant problem since mucosal tissue is the point of entry for 90% of pathogens. In order to provide protection for both serum and mucosal areas, we have tested a combinatorial approach of both parenteral and oral administration of antigens for diseases caused by a viral pathogen, Hepatitis B, and a fungal pathogen, . We demonstrate that co-administration by the parenteral and oral routes is a useful tool to increase the overall immune response.

View Article and Find Full Text PDF

Brain endocannabinoids (EC) such as arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) primarily originate from serum arachidonic acid (ARA), whose level is regulated in part by a cytosolic ARA-binding protein, that is, liver fatty acid binding protein-1 (FABP1), not expressed in the brain. Ablation of the Fabp1 gene (LKO) increases brain AEA and 2-AG by decreasing hepatic uptake of ARA to increase serum ARA, thereby increasing ARA availability for uptake by the brain. The brain also expresses sterol carrier protein-2 (SCP-2), which is also a cytosolic ARA-binding protein.

View Article and Find Full Text PDF

Liver fatty acid binding protein (L-FABP) is the major fatty acid binding/"chaperone" protein in hepatic cytosol. Although fatty acids can be derived from the breakdown of dietary fat and glucose, relatively little is known regarding the impact of L-FABP on phenotype in the context of high dietary glucose. Potential impact was examined in wild-type (WT) and Lfabp gene ablated (LKO) female mice fed either a control or pair-fed high glucose diet (HGD).

View Article and Find Full Text PDF

Although serum Δ-tetrahydrocannabinol (Δ-THC) undergoes rapid hepatic clearance and metabolism, almost nothing is known regarding the mechanism(s) whereby this highly lipophilic phytocannabinoid is transported for metabolism/excretion. A novel NBD-arachidonoylethanolamide (NBD-AEA) fluorescence displacement assay showed that liver fatty acid binding protein (FABP1), the major hepatic endocannabinoid (EC) binding protein, binds the first major metabolite of Δ-THC (Δ-THC-OH) as well as Δ-THC itself. Circular dichroism (CD) confirmed that not only Δ-THC and Δ-THC-OH but also downstream metabolites Δ-THC-COOH and Δ-THC-CO-glucuronide directly interact with FABP1.

View Article and Find Full Text PDF

Liver fatty-acid-binding protein (FABP1, L-FABP) is the major cytosolic binding/chaperone protein for both precursor arachidonic acid (ARA) and the endocannabinoid (EC) products N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Although FABP1 regulates hepatic uptake and metabolism of ARA, almost nothing is known regarding FABP1's impact on AEA and 2-AG uptake, intracellular distribution, and targeting of AEA and 2-AG to degradative hepatic enzymes. In vitro assays revealed that FABP1 considerably enhanced monoacylglycerol lipase hydrolysis of 2-AG but only modestly enhanced AEA hydrolysis by fatty-acid amide hydrolase.

View Article and Find Full Text PDF

Dysregulation of the hepatic endocannabinoid (EC) system and high fat diet (HFD) are associated with non-alcoholic fatty liver disease. Liver cytosol contains high levels of two novel endocannabinoid binding proteins-liver fatty acid binding protein (FABP1) and sterol carrier protein-2 (SCP-2). While Fabp1 gene ablation significantly increases hepatic levels of arachidonic acid (ARA)-containing EC and sex-dependent response to pair-fed high fat diet (HFD), the presence of SCP-2 complicates interpretation.

View Article and Find Full Text PDF

Hepatic endocannabinoids (EC) and their major binding/"chaperone" protein (i.e., liver fatty acid binding protein-1 [FABP1]) are associated with development of nonalcoholic fatty liver (NAFLD) in animal models and humans.

View Article and Find Full Text PDF

Phytocannabinoids, such as Δ-tetrahydrocannabinol (THC), bind and activate cannabinoid (CB) receptors, thereby "piggy-backing" on the same pathway's endogenous endocannabinoids (ECs). The recent discovery that liver fatty acid binding protein-1 (FABP1) is the major cytosolic "chaperone" protein with high affinity for both Δ-THC and ECs suggests that Δ-THC may alter hepatic EC levels. Therefore, the impact of Δ-THC or EC treatment on the levels of endogenous ECs, such as -arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), was examined in cultured primary mouse hepatocytes from WT and gene-ablated (LKO) mice.

View Article and Find Full Text PDF

Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females.

View Article and Find Full Text PDF

While prior studies focusing on male mice suggest a role for sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x; DKO) on hepatic phytol metabolism, its role in females is unresolved. This issue was addressed using female and male wild-type (WT) and DKO mice fed a phytoestrogen-free diet without or with 0.5% phytol.

View Article and Find Full Text PDF

Upregulation of the hepatic endocannabinoid (EC) receptor [cannabinoid receptor-1 (CB1)] and arachidonoylethanolamide (AEA) is associated with nonalcoholic fatty liver disease (NAFLD). Male mice fed high-fat diet (HFD) ad libitum also exhibit NAFLD, increased hepatic AEA, and obesity. But, preference for HFD complicates interpretation and almost nothing is known about these effects in females.

View Article and Find Full Text PDF

Using recombinant human wild-type fatty acid binding protein 1 (WT FABP1 T94T) and a variant (FABP1 T94A) protein, fluorescence binding assays, and circular dichroism, it was shown for the first time that WT FABP1 and the T94A variant each have a single, relatively hydrophobic site for binding fluorescent NBD-labeled analogues of N-arachidonoylethanolamide and 2-arachidonoylglycerol with high affinity. Most native N-acylethanolamides (NAEs) but only one 2-monoacylglycerol [i.e.

View Article and Find Full Text PDF

Studies in vitro have suggested that both sterol carrier protein-2/sterol carrier protein-x () and liver fatty acid binding protein [ (L-FABP)] gene products facilitate hepatic uptake and metabolism of lipotoxic dietary phytol. However, interpretation of physiological function in mice singly gene ablated in the has been complicated by concomitant upregulation of FABP1. The work presented herein provides several novel insights: ) An 8-anilino-1-naphthalenesulfonic acid displacement assay showed that neither SCP-2 nor L-FABP bound phytol, but both had high affinity for its metabolite, phytanic acid; ) GC-MS studies with phytol-fed WT and gene ablated [triple KO (TKO)] mice showed that TKO exacerbated hepatic accumulation of phytol metabolites in vivo in females and less so in males.

View Article and Find Full Text PDF

Liver fatty acid binding protein (Fabp1) and sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) genes encode proteins that enhance hepatic uptake, cytosolic transport, and peroxisomal oxidation of toxic branched-chain fatty acids derived from dietary phytol. Since male wild-type (WT) mice express markedly higher levels of these proteins than females, the impact of ablating both genes (TKO) was examined in phytol-fed males. In WT males, high phytol diet alone had little impact on whole body weight and did not alter the proportion of lean tissue mass (LTM) versus fat tissue mass (FTM).

View Article and Find Full Text PDF

In vitro studies suggest that liver fatty acid binding protein (L-FABP) and sterol carrier protein-2/sterol carrier protein-x (SCP2/SCPx) gene products facilitate uptake and metabolism and detoxification of dietary-derived phytol in mammals. However, concomitant upregulation of L-FABP in SCP2/SCPx null mice complicates interpretation of their physiological phenotype. Therefore, the impact of ablating both the L-FABP gene and SCP2/SCPx gene (L-FABP/SCP2/SCPx null or TKO) was examined in phytol-fed female wild-type (WT) and TKO mice.

View Article and Find Full Text PDF

The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids.

View Article and Find Full Text PDF

Endocannabinoids (ECs) and cannabinoids are very lipophilic molecules requiring the presence of cytosolic binding proteins that chaperone these molecules to intracellular targets. While three different fatty acid binding proteins (FABP3, -5, and -7) serve this function in brain, relatively little is known about how such hydrophobic ECs and cannabinoids are transported within the liver. The most prominent hepatic FABP, liver fatty acid binding protein (FABP1 or L-FABP), has high affinity for arachidonic acid (ARA) and ARA-CoA, suggesting that FABP1 may also bind ARA-derived ECs (AEA and 2-AG).

View Article and Find Full Text PDF

Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.

View Article and Find Full Text PDF

Objective: Half of patients with systemic lupus erythematosus (SLE) consider fatigue to be the most disabling disease symptom. To develop and promote strategies to prevent and control fatigue, this study aimed to describe how women with SLE manage the experience of fatigue.

Methods: Four focus groups were conducted with 27 women with SLE, and data were analyzed by means of framework analysis.

View Article and Find Full Text PDF
Article Synopsis
  • FABP1 is a liver protein that helps transport arachidonic acid (ARA), a precursor for endocannabinoids, but is not found in the brain.
  • The study found that mice lacking FABP1 (LKO) had higher levels of ARA-containing endocannabinoids (like AEA and 2-AG) in their brains, along with increased non-ARA endocannabinoids.
  • These changes in brain endocannabinoids were not due to compensatory up-regulation of enzymes or proteins involved in endocannabinoid synthesis and signaling, highlighting the significant role of FABP1 in regulating endocannabinoid levels from outside the brain.
View Article and Find Full Text PDF

The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids.

View Article and Find Full Text PDF

Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only.

View Article and Find Full Text PDF

Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice.

View Article and Find Full Text PDF

While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males.

View Article and Find Full Text PDF