Publications by authors named "Kiener D"

Understanding material failure on a fundamental level is a key aspect in the design of robust structural materials, especially for metals and alloys capable to undergo plastic deformation. In the last decade, significant progress is made in quantifying the stresses associated with failure in both experiments and simulations. Nonetheless, the processes occurring on the most essential level of individual dislocations that govern semi-brittle and ductile fracture are still experimentally not accessible, limiting the failure prediction capabilities.

View Article and Find Full Text PDF

Unlabelled: Mudstones and shales serve as natural barrier rocks in various geoenergy applications. Although many studies have investigated their mechanical properties, characterizing these parameters at the microscale remains challenging due to their fine-grained nature and susceptibility to microstructural damage introduced during sample preparation. This study aims to investigate the micromechanical properties of clay matrix composite in mudstones by combining high-speed nanoindentation mapping and machine learning data analysis.

View Article and Find Full Text PDF

Dental enamels of different species exhibit a wide variety of microstructural patterns that are attractive to mimic in bioinspired composites to simultaneously achieve high stiffness and superior toughness. Non-human enamel types, however, have not yet received the deserved attention and their mechanical behaviour is largely unknown. Using nanoindentation tests and finite element modelling, we investigate the mechanical behaviour of Macropus rufogriseus enamel, revealing a dominating influence of the microstructure on the effective mechanical behaviour and allowing insight into structural dependencies.

View Article and Find Full Text PDF
Article Synopsis
  • The limpet tooth is recognized as one of nature's strongest materials, with impressive strength values up to 6.5 GPa, and it exhibits unique auxetic properties at the microscale that contribute to this strength.
  • Recent studies show that due to these auxetic properties, local tensile strains occur during nanoindentation, leading to microdamage, which explains the lower hardness values observed in this testing compared to micropillar compression tests.
  • Micropillar tests are recommended for measuring the strength of limpet teeth as they are less affected by microdamage, allowing for a better characterization of the material's unique properties.
View Article and Find Full Text PDF

Nanocomposites bear the potential to enable novel material properties that considerably exceed the capabilities of their individual constituent phases, thereby enabling the exploration of white areas on material property charts [...

View Article and Find Full Text PDF
Article Synopsis
  • Auxetic materials, which have a negative Poisson's ratio, are rare in nature and difficult to engineer alongside high strength and stiffness.
  • Research on limpet teeth reveals that their unique microstructure contains an amorphous hydrated silica matrix and iron oxide hydroxide nanorods arranged in a specific pattern, which allows for coordinated movements during deformation.
  • This discovery paves the way for creating new biomimetic materials that combine auxetic properties with exceptional strength and stiffness, potentially influencing future engineering applications.
View Article and Find Full Text PDF

Brittle fracture and ductile failure are critical events for any structural or functional component, as it marks the end of lifetime and potential hazard to human life. As such, materials scientists continuously strive to better understand and subsequently avoid these events in modern materials. A century after the seminal initial contribution by Griffith, fracture mechanics has come a long way and is still experiencing vivid progress.

View Article and Find Full Text PDF

Unlabelled: The favorable combination of high material removal rate and low influence on the material beneath the ultra-short pulsed laser-processed surface are of particular advantage for sample preparation. This is especially true at the micrometer scale or for the pre-preparation for a subsequent focused ion beam milling process. Specific surface features, the laser-induced periodic surface structures, are generated on femtosecond laser-irradiated surfaces in most cases, which pose an issue for surface-sensitive mechanical testing or microstructural investigations.

View Article and Find Full Text PDF

The applicability of nano-crystalline W/Cu composites is governed by their mechanical properties and microstructural stability at high temperatures. Therefore, mechanical and structural investigations of a high-pressure torsion deformed W/Cu nanocomposite were performed up to a temperature of 600 °C. Furthermore, the material was annealed at several temperatures for 1 h within a high-vacuum furnace to determine microstructural changes and surface effects.

View Article and Find Full Text PDF

Micromechanical testing techniques can reveal a variety of characteristics in materials that are otherwise impossible to address. However, unlike to macroscopic testing, these miniaturized experiments are more challenging to realize and analyze, as loading and boundary conditions can often not be controlled to the same extent as in standardized macroscopic tests. Hence, exploiting all possible information from such an experiment seems utmost desirable.

View Article and Find Full Text PDF

Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel, an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials, only direct observation during in-situ charging allows for addressing H effects on materials.

View Article and Find Full Text PDF

The elastic-to-plastic transition during the deformation of a dislocation-free nanoscale volume is accompanied by displacement bursts associated with dislocation nucleation. The dislocations that nucleate during the so-called "pop-in" burst take the form of prismatic dislocation loops (PDLs) and exhibit characteristic burst-like emission and plastic recovery. Here, we report the in-situ transmission electron microscopy (TEM) observation of the initial plasticity ensued by burst-like emission of PDLs on nanoindentation of dislocation-free Au nanowires.

View Article and Find Full Text PDF

An in situ hydrogen (H) plasma charging and in situ observation method was developed to continuously charge materials, while tensile testing them inside a scanning electron microscope (SEM). The present work will introduce and validate the setup and showcase an application allowing high-resolution observation of H-material interactions in a Ni-based alloy, Alloy 718. The effect of charging time and pre-straining was investigated.

View Article and Find Full Text PDF

Bioinspired ceramics with micron-scale ceramic "bricks" bonded by a metallic "mortar" are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressureless infiltration of a zirconium-based bulk-metallic glass mortar that reactively wets the surface of freeze-cast alumina preforms. The mechanical properties of the resulting AlO with a glass-forming compliant-phase change with infiltration temperature and ceramic content, leading to a trade-off between flexural strength (varying from 89 to 800 MPa) and fracture toughness (varying from 4 to more than 9 MPa·m).

View Article and Find Full Text PDF

Nanoporous metals have attracted attention in various research fields in the past years since their unique microstructures make them favorable for catalytic, sensory or microelectronic applications. Moreover, the refinement of the ligaments down to the nanoscale leads to an exceptionally high strength. To guarantee a smooth implementation of nanoporous metals into modern devices their thermo-mechanical behavior must be properly understood.

View Article and Find Full Text PDF

Rapid progress in the reduction of substrate thickness for silicon-based microelectronics leads to a significant reduction of the device bending stiffness and the need to address its implication for the thermo-mechanical fatigue behavior of metallization layers. Results on 5 µm thick Cu films reveal a strong substrate thickness-dependent microstructural evolution. Substrates with = 323 and 220 µm showed that the Cu microstructure exhibits accelerated grain growth and surface roughening.

View Article and Find Full Text PDF

Modern nanoindentation devices are capable of dynamic experimentations, which allow us to exploit instrumented hardness tests extensively. Beside the assets of recording mechanical properties continuously over displacement, there are ongoing debates whether the superimposed force alters the material's hardness. We will show for a broad range of materials that significant hardness differences are noted between dynamic and static tests, even for large displacements.

View Article and Find Full Text PDF

The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.

View Article and Find Full Text PDF

As the length scale of sample dimensions is reduced to the micron and sub-micron scales, the strength of various materials has been observed to increase with decreasing size, a fact commonly referred to as the 'sample size effect'. In this work, the influence of temperature on the sample size effect in copper is investigated using microcompression testing at 25, 200 and 400 °C in the SEM on vacuum-annealed copper structures, and the resulting deformed structures were analysed using X-ray μLaue diffraction and scanning electron microscopy. For pillars with sizes between 0.

View Article and Find Full Text PDF

For testing time-dependent material properties by nanoindentation, in particular for long-term creep or relaxation experiments, thermal drift influences on the displacement signal are of prime concern. To address this at room and elevated temperatures, we tested fused quartz at various contact depths at room temperature and ultra-fine grained (ufg) Au at various temperatures. We found that the raw data for fused quartz are strongly affected by thermal drift, but corrected by use of dynamic stiffness measurements all the datasets collapse.

View Article and Find Full Text PDF

Porous materials with ligament sizes in the submicrometer to nanometer regime have a high potential for future applications such as catalysts, actuators, or radiation tolerant materials, which require properties like high strength-to-weight ratio, high surface-to-volume ratio, or large interface density as for radiation tolerance. The objective of this work was to manufacture ultra-fine porous copper, to determine the thermo-mechanical properties, and to elucidate the deformation behavior at room as well as elevated temperatures via nanoindentation. The experimental approach for manufacturing the foam structures used high pressure torsion, subsequent heat treatments, and selective dissolution.

View Article and Find Full Text PDF

Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires.

View Article and Find Full Text PDF

We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100-200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strain and limited hardening in the single slip case, the multiple slip samples exhibit extended homogenous deformation and necking due to the activation of multiple dislocation sources in conjunction with significant hardening.

View Article and Find Full Text PDF

A unique method for quantitative in situ nanotensile testing in a transmission electron microscope employing focused ion beam fabricated specimens was developed. Experiments were performed on copper samples with minimum dimensions in the 100-200 nm regime oriented for either single slip or multiple slip, respectively. We observe that both frequently discussed mechanisms, truncation of spiral dislocation sources and exhaustion of defects available within the specimen, contribute to high strengths and related size-effects in small volumes.

View Article and Find Full Text PDF

Increasing demand for energy and reduction of carbon dioxide emissions has revived interest in nuclear energy. Designing materials for radiation environments necessitates a fundamental understanding of how radiation-induced defects alter mechanical properties. Ion beams create radiation damage efficiently without material activation, but their limited penetration depth requires small-scale testing.

View Article and Find Full Text PDF