Publications by authors named "Kiehn J"

Endogenous circadian clocks have evolved to anticipate 24 hr rhythms in environmental demands. Recent studies suggest that circadian rhythm disruption is a major risk factor for the development of metabolic disorders in humans. Conversely, alterations in energy state can disrupt circadian rhythms of behavior and physiology, creating a vicious circle of metabolic dysfunction.

View Article and Find Full Text PDF

Unlimited access to calorie-dense, palatable food is a hallmark of Western societies and substantially contributes to the worldwide rise of metabolic disorders. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, further augmenting metabolic disruption. We developed a paradigm to reveal differential timing in the regulation of food intake behavior in mice.

View Article and Find Full Text PDF

To anticipate and adapt to daily recurring events defined by the earth's rotation such as light-dark and temperature cycles, most species have developed internal, so-called circadian clocks. These clocks are involved in the regulation of behaviors such as the sleep-wake cycle and the secretion of hormones and neurotransmitters. Disruptions of the circadian system affect cognitive functions and are associated with various diseases that are characterized by altered neurotransmitter signaling.

View Article and Find Full Text PDF

The 24-h sleep-wake cycle is one of the most prominent outputs of the circadian clock system. At the same time, changes in sleep-wake behavior feedback on behavioral and physiological circadian rhythms, thus altering the coordination of the body's clock network. Sleep and circadian rhythm disruption have similar physiological endpoints including metabolic, cognitive, and immunologic impairments.

View Article and Find Full Text PDF

Study Objectives: Shortened or mistimed sleep affects metabolic homeostasis, which may in part be mediated by dysregulation of endogenous circadian clocks. In this study, we assessed the contribution of sleep disruption to metabolic dysregulation by analysing diurnal transcriptome regulation in metabolic tissues of mice subjected to a sleep restriction (SR) paradigm.

Methods: Male mice were subjected to 2 × 5 days of SR with enforced waking during the first 6 hours of the light phase.

View Article and Find Full Text PDF

The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins.

View Article and Find Full Text PDF

In modern societies, the risk of developing a whole array of affective and somatic disorders is associated with the prevalence of frequent psychosocial stress. Therefore, a better understanding of adaptive stress responses and their underlying molecular mechanisms is of high clinical interest. In response to an acute stressor, each organism can either show passive freezing or active fight-or-flight behaviour, with activation of sympathetic nervous system and the hypothalamus-pituitary-adrenal (HPA) axis providing the necessary energy for the latter by releasing catecholamines and glucocorticoids (GC).

View Article and Find Full Text PDF
Article Synopsis
  • Doxazosin, an antihypertensive drug, is linked to a higher risk of congestive heart failure and induces apoptosis (cell death) in cardiomyocytes.
  • The drug blocks hERG K(+) channels, which are plasma membrane receptors, specifically affecting human embryonic kidney (HEK) cells that express these channels.
  • The study reveals that doxazosin's binding to hERG may initiate apoptotic processes, suggesting a new understanding of how some drugs could contribute to heart failure.
View Article and Find Full Text PDF

Human ether-a-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current, IKr, which is crucial for repolarization of cardiac action potentials. Moderate hERG blockade may produce a beneficial class III antiarrhythmic effect. In contrast, a reduction in hERG currents due to either genetic defects or adverse drug effects can lead to hereditary or acquired long QT syndromes characterized by action potential prolongation, lengthening of the QT interval on the surface ECG, and an increased risk for "torsade de pointes" arrhythmias and sudden death.

View Article and Find Full Text PDF

The last decade has seen rapid progress in our understanding of the molecular basis of arrhythmias, particularly concerning hereditary arrhythmia syndromes. This has led to significant improvement regarding differentiation, risk stratification and therapy in these patients and their families. However, there is mounting evidence that the knowledge obtained by studying these rare monogenic disorders will also enable us to dissect the molecular mechanisms underlying polygenetic and multi-factorial arrhythmias that are by far more common in clinical practice.

View Article and Find Full Text PDF

To elucidate the ionic mechanism of endothelin-1 (ET-1)-induced focal ventricular tachyarrhythmias, the regulation of I(K1) and its main molecular correlates, Kir2.1, Kir2.2 and Kir2.

View Article and Find Full Text PDF

Although commonly addressed in magazines, across airwaves, and within gyms nationwide, health care providers must now face the growing epidemic of obesity in their daily practice. With the graying of America, it is all the more important to realize that weight increases the risk for disease and mortality in the elderly. Despite overwhelming evidence that weight loss can reduce health risks, many patients who are overweight never receive needed advice from their primary care physicians.

View Article and Find Full Text PDF

Flavonoids are naturally occurring food ingredients that have been associated with reduced cardiovascular mortality in epidemiological studies. In a previous study, we demonstrated for the first time that flavonoids are inhibitors of cardiac human ether-à-go-go-related gene (HERG) channels. Furthermore, we observed that grapefruit juice induced mild QTc prolongation in healthy subjects.

View Article and Find Full Text PDF

Objective: Hereditary long QT syndrome (LQTS) is a genetically heterogeneous disease characterized by prolonged QT intervals and an increased risk for ventricular arrhythmias and sudden cardiac death. Mutations in the voltage-gated potassium channel subunit KCNQ1 induce the most common form of LQTS. KCNQ1 is associated with two different entities of LQTS, the autosomal-dominant Romano-Ward syndrome (RWS), and the autosomal-recessive Jervell and Lange-Nielsen syndrome (JLNS) characterized by bilateral deafness in addition to cardiac arrhythmias.

View Article and Find Full Text PDF

Background: A high intake of dietary flavonoids, which are abundant in fruits, vegetables, tea, and wine, is known to reduce cardiovascular mortality. The effects of flavonoids on cardiac electrophysiology, which theoretically may have both antiarrhythmic and proarrhythmic consequences, have not been studied systematically to date.

Methods And Results: We screened a broad spectrum of flavonoids for their inhibitory activity on HERG channels by using heterologous expression in Xenopus oocytes.

View Article and Find Full Text PDF

Ajmaline is a class Ia anti-arrhythmic drug used in several European countries and Japan as first-line treatment for ventricular tachyarrhythmia. Ajmaline has been reported to induce cardiac output (QT) prolongation and to inhibit cardiac potassium currents in guinea pig cardiomyocytes. In order to elucidate the molecular basis of these effects, we examined effects of ajmaline on human ether a-go-go related gene HERG potassium channels.

View Article and Find Full Text PDF

Objective: The human ether-a-go-go-related gene (hERG) encodes the rapid component of the cardiac repolarizing delayed rectifier potassium current, I(Kr). The direct interaction of the commonly used protein kinase C (PKC) inhibitor bisindolylmaleimide I (BIM I) with hERG, KvLQT1/minK, and I(Kr) currents was investigated in this study.

Methods: hERG and KvLQT1/minK channels were heterologously expressed in Xenopus laevis oocytes, and currents were measured using the two-microelectrode voltage clamp technique.

View Article and Find Full Text PDF

Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG.

View Article and Find Full Text PDF

Patients with cardiac disease typically develop life-threatening ventricular arrhythmias during physical or emotional stress, suggesting a link between adrenergic stimulation and regulation of the cardiac action potential. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of the repolarizing delayed rectifier potassium current, I(Kr). Previous studies have revealed that hERG channel activation is modulated by activation of the beta-adrenergic system.

View Article and Find Full Text PDF

Trazodone is an atypical antidepressant that is commonly used in the treatment of affective disorders. There have repeatedly been reports of cardiac arrhythmia associated with this drug and concerns have been raised regarding the cardiac safety of trazodone. However, interaction with HERG channels as a main factor of cardiac side effects has not been studied to date.

View Article and Find Full Text PDF

Objective: The cardiac inwardly rectifying potassium current IK1 and its molecular correlates Kir2.1 and Kir2.2 play an important role in cardiac repolarisation and in the pathogenesis of hereditary long-QT syndrome (LQTS-7).

View Article and Find Full Text PDF

Ventricular arrhythmias are often precipitated by physical or emotional stress, in particular in patients with ischemic heart disease or hereditary long QT syndrome. Stimulation of the sympathetic nervous system in response to exercise or emotional stress causes activation of cardiac alpha- and beta-adrenoceptors. The rapid component of the delayed rectifier potassium current, I(Kr), and the underlying hERG potassium channel are critical for the regulation of heart rhythm.

View Article and Find Full Text PDF

Repolarization of cardiomyocytes is mainly performed by the rapid component of the delayed rectifier potassium current, I(Kr), which is encoded by the human ether-a-go-go-related gene (HERG). Inhibition of HERG potassium currents by class III antiarrhythmic drugs causes lengthening of the cardiac action potential, which produces a beneficial antiarrhythmic effect. Conversely, excessive prolongation of the action potential by a wide variety of antiarrhythmic and non-antiarrhythmic drugs may lead to acquired long-QT syndrome, which is associated with a risk for 'torsade de pointes'-arrhythmias and sudden cardiac death.

View Article and Find Full Text PDF

1 The topoisomerase II inhibitor amsacrine is used in the treatment of acute myelogenous leukemia. Although most anticancer drugs are believed not to cause acquired long QT syndrome (LQTS), concerns have been raised by reports of QT interval prolongation, ventricular fibrillation and death associated with amsacrine treatment. Since blockade of cardiac human ether-a-go-go-related gene (HERG) potassium currents is an important cause of acquired LQTS, we investigated the acute effects of amsacrine on cloned HERG channels to determine the electrophysiological basis for its proarrhythmic potential.

View Article and Find Full Text PDF