Unlabelled: SARS-CoV-2 3C-like protease (3CL), a potential therapeutic target for COVID-19, consists of a chymotrypsin fold and a C-terminal α-helical domain (domain III), the latter of which mediates dimerization required for catalytic activation. To gain further understanding of the functional dynamics of SARS-CoV-2 3CL, this review extends the scope to the comparative study of many crystal structures of proteases having the chymotrypsin fold (clan PA of the MEROPS database). First, the close correspondence between the zymogen-enzyme transformation in chymotrypsin and the allosteric dimerization activation in SARS-CoV-2 3CL is illustrated.
View Article and Find Full Text PDFUbiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in multiple membrane trafficking pathways. The enzyme activity is inhibited by binding to 14-3-3 proteins. Mutations in the 14-3-3-binding motif in USP8 are related to Cushing's disease.
View Article and Find Full Text PDFThe 3C-like protease (3CL) of SARS-CoV-2 is a potential therapeutic target for COVID-19. Importantly, it has an abundance of structural information solved as a complex with various drug candidate compounds. Collecting these crystal structures (83 Protein Data Bank (PDB) entries) together with those of the highly homologous 3CL of SARS-CoV (101 PDB entries), we constructed the crystal structure ensemble of 3CL to analyze the dynamic regulation of its catalytic function.
View Article and Find Full Text PDFProtein kinases play important roles in cellular signaling and have been one of the best-studied drug targets. The kinase domain of epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that has been extensively studied for cancer drug discovery and for understanding the unique activation mechanism by dimerization. Here, we analyzed all available 206 crystal structures of the EGFR kinase and the dynamics observed in molecular simulations to identify how these structures are determined.
View Article and Find Full Text PDFBiophys Physicobiol
November 2019
Inositol 1,4,5-trisphosphate (IP) receptor (IPR) is a huge tetrameric intracellular Ca channel that mediates cytoplasmic Ca signaling. The structural basis of the gating in IPR has been studied by X-ray crystallography and cryo-electron microscopy, focusing on the domain rearrangements triggered by IP binding. Here, we conducted molecular dynamics (MD) simulations of the three N-terminal domains of IPR responsible for IP binding (IBC/SD; two domains of the IP binding core, IBCβ and IBCα, and suppressor domain, SD) as a model system to study the initial gating stage.
View Article and Find Full Text PDFPoly-ubiquitin (poly-Ub) is involved in various cellular processes through the linkage-specific recognition of Ub-binding domains (UBD). In this study, using molecular dynamics (MD) simulation together with an enhanced sampling method, we demonstrated that K63-linked di-Ub recognizes the NZF domain of TAB2, a zinc finger UBD, in an ensemble of highly dynamic structures that form from the weak interactions between UBD and the flexible linker connecting the two Ubs. However, the K63 di-Ub/TAB2 NZF complex showed a much more compact and stable ensemble than the non-native complexes, linear di-Ub/TAB2 NZF and K33 di-Ub/TAB2 NZF, that were modeled from linear di-Ub/HOIL-1L NZF and K33 di-Ub/TRABID NZF1, respectively.
View Article and Find Full Text PDFUbiquitin-conjugating enzymes (E2) form thioester bonds with ubiquitin (Ub), which are subsequently transferred to target proteins for cellular progress. Ube2K/E2-25K (a class II E2 enzyme) contains a C-terminal ubiquitin-associated (UBA) domain that has been suggested to control ubiquitin recognition, dimerization, or poly-ubiquitin chain formation. Ube2K is a special E2 because it synthesizes K48-linked poly-ubiquitin chains without E3 ubiquitin ligase.
View Article and Find Full Text PDFEnhanced sampling yields a comprehensive structural ensemble or a free energy landscape, which is beyond the capability of a conventional molecular dynamics simulation. Our recently developed multiscale enhanced sampling (MSES) method employs a coarse-grained model coupled with the target physical system for the efficient acceleration of the dynamics. MSES has demonstrated applicability to large protein systems in solution, such as intrinsically disordered proteins and protein-protein and protein-ligand interactions.
View Article and Find Full Text PDFIonic scattering factors of atoms that compose biological molecules have been computed by the multi-configuration Dirac-Fock method. These ions are chemically unstable and their scattering factors had not been reported except for O. Yet these factors are required for the estimation of partial charges in protein molecules and nucleic acids.
View Article and Find Full Text PDFThe multidrug transporter AcrB transports a broad range of drugs out of the cell by means of the proton-motive force. The asymmetric crystal structure of trimeric AcrB suggests a functionally rotating mechanism for drug transport. Despite various supportive forms of evidence from biochemical and simulation studies for this mechanism, the link between the functional rotation and proton translocation across the membrane remains elusive.
View Article and Find Full Text PDFThe proper location and timing of Dnmt1 activation are essential for DNA methylation maintenance. We demonstrate here that Dnmt1 utilizes two-mono-ubiquitylated histone H3 as a unique ubiquitin mark for its recruitment to and activation at DNA methylation sites. The crystal structure of the replication foci targeting sequence (RFTS) of Dnmt1 in complex with H3-K18Ub/23Ub reveals striking differences to the known ubiquitin-recognition structures.
View Article and Find Full Text PDFBiophys Physicobiol
November 2016
Understanding how proteins fold through a vast number of unfolded states is a major subject in the study of protein folding. Herein, we present itinerary profiling as a simple method to analyze molecular dynamics trajectories, and apply this method to Trp-cage. In itinerary profiling, structural clusters included in a trajectory are represented by a bit sequence, and a number of trajectories, as well as the structural clusters, can be compared and classified.
View Article and Find Full Text PDFProtein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom.
View Article and Find Full Text PDFThe chromodomain of HP1α binds directly to lysine 9-methylated histone H3 (H3K9me). This interaction is enhanced by phosphorylation of serine residues in the N-terminal tail of HP1α by unknown mechanism. Here we show that phosphorylation modulates flexibility of HP1α's N-terminal tail, which strengthens the interaction with H3.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations.
View Article and Find Full Text PDFData assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from "replicated" molecular dynamics (MD) simulations. A particle filter using a large number of "replicated" MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data.
View Article and Find Full Text PDFProtein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions.
View Article and Find Full Text PDFProtein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules.
View Article and Find Full Text PDFFour Psychrobacter strains, JCM 18900, JCM 18901, JCM 18902, and JCM 18903, related to either Psychrobacter nivimaris or Psychrobacter cibarius, were isolated from frozen marine animals. The genome information of these four strains will be useful for studies of their physiology and adaptation properties to frozen conditions.
View Article and Find Full Text PDFThe structures of the same protein, determined under different conditions, provide clues toward understanding the role of structural changes in the protein's function. Structural changes are usually identified as rigid-body motions, which are defined using a particular threshold of rigidity, such as domain motions. However, each protein actually undergoes motions with various size and magnitude ranges.
View Article and Find Full Text PDFWe propose a novel path sampling method based on the Onsager-Machlup (OM) action by generalizing the multiscale enhanced sampling technique suggested by Moritsugu and co-workers [J. Chem. Phys.
View Article and Find Full Text PDFInositol 1,4,5-trisphosphate receptor (InsP3 R) is an intracellular Ca(2+) -release channel activated by binding of inositol 1,4,5-trisphosphate (InsP3 ) to the InsP3 binding core (IBC). Structural change in the IBC upon InsP3 binding is the key process in channel pore opening. In this study, we performed molecular dynamics (MD) simulations of the InsP3 -free form of the IBC, starting with removal of InsP3 from the InsP3 -bound crystal structure, and obtained the structural ensemble of the InsP3 -free form of the IBC.
View Article and Find Full Text PDFStructural symmetry in homooligomeric proteins has intrigued many researchers over the past several decades. However, the implication of protein symmetry is still not well understood. In this study, we performed molecular dynamics (MD) simulations of two forms of trp RNA binding attenuation protein (TRAP), the wild-type 11-mer and an engineered 12-mer, having two different levels of circular symmetry.
View Article and Find Full Text PDFThe complex of sensory rhodopsin II (SRII) and its cognate transducer HtrII (2:2 SRII-HtrII complex) consists of a photoreceptor and its signal transducer, respectively, associated with negative phototaxis in extreme halophiles. In this study to investigate how photoexcitation in SRII affects the structures of the complex, we conducted two series of molecular dynamics simulations of the complex of SRII and truncated HtrII (residues 1-136) of Natronomonas pharaonis linked with a modeled HAMP domain in the lipid bilayer using the two crystal structures of the ground state and the M-intermediate state as the starting structures. The simulation results showed significant enhancements of the structural differences observed between the two crystal structures.
View Article and Find Full Text PDF