As an alternative to traditional remote controller, research on vision-based hand gesture recognition is being actively conducted in the field of interaction between human and unmanned aerial vehicle (UAV). However, vision-based gesture system has a challenging problem in recognizing the motion of dynamic gesture because it is difficult to estimate the pose of multi-dimensional hand gestures in 2D images. This leads to complex algorithms, including tracking in addition to detection, to recognize dynamic gestures, but they are not suitable for human-UAV interaction (HUI) systems that require safe design with high real-time performance.
View Article and Find Full Text PDFAutonomous driving helps drivers avoid paying attention to keeping to a lane or keeping a distance from the vehicle ahead. However, the autonomous driving is limited by the need to park upon the completion of driving. In this sense, automated valet parking (AVP) system is one of the promising technologies for enabling drivers to free themselves from the burden of parking.
View Article and Find Full Text PDFLiDAR-based Simultaneous Localization And Mapping (SLAM), which provides environmental information for autonomous vehicles by map building, is a major challenge for autonomous driving. In addition, the semantic information has been used for the LiDAR-based SLAM with the advent of deep neural network-based semantic segmentation algorithms. The semantic segmented point clouds provide a much greater range of functionality for autonomous vehicles than geometry alone, which can play an important role in the mapping step.
View Article and Find Full Text PDFThe connected powertrain control, which uses intelligent transportation system information, has been widely researched to improve driver convenience and energy efficiency. The vehicle state prediction on decelerating driving conditions can be applied to automatic regenerative braking in electric vehicles. However, drivers can feel a sense of heterogeneity when regenerative control is performed based on prediction results from a general prediction model.
View Article and Find Full Text PDFPoint clouds from light detecting and ranging (LiDAR) sensors represent increasingly important information for environmental object detection and classification of automated and intelligent vehicles. Objects in the driving environment can be classified as either d y n a m i c or s t a t i c depending on their movement characteristics. A LiDAR point cloud is also segmented into d y n a m i c and s t a t i c points based on the motion properties of the measured objects.
View Article and Find Full Text PDFThe smart regenerative braking system (SRS) is an autonomous version of one-pedal driving in electric vehicles. To implement SRS, a deceleration planning algorithm is necessary to generate the deceleration used in automatic regenerative control. To reduce the discomfort from the automatic regeneration, the deceleration should be similar to human driving.
View Article and Find Full Text PDFMulti-sensor perception systems may have mismatched coordinates between each sensor even if the sensor coordinates are converted to a common coordinate. This discrepancy can be due to the sensor noise, deformation of the sensor mount, and other factors. These mismatched coordinates can seriously affect the estimation of a distant object's position and this error can result in problems with object identification.
View Article and Find Full Text PDFA High-Definition map (HD map) is a precise and detailed map composed of various landmark feature layers. The HD map is a core technology that facilitates the essential functions of intelligent vehicles. Recently, it has come to be required for the HD map to continuously add new feature layers in order to increase the performances of intelligent vehicles in more complicated environments.
View Article and Find Full Text PDFNowadays, many intelligent vehicles are equipped with various sensors to recognize their surrounding environment and to measure the motion or position of the vehicle. In addition, the number of intelligent vehicles equipped with a mobile Internet modem is increasing. Based on the sensors and Internet connection, the intelligent vehicles are able to share the sensor information with other vehicles via a cloud service.
View Article and Find Full Text PDFHigh Definition (HD) maps are becoming key elements of the autonomous driving because they can provide information about the surrounding environment of the autonomous car without being affected by the real-time perception limit. To provide the most recent environmental information to the autonomous driving system, the HD map must maintain up-to-date data by updating changes in the real world. This paper presents a simultaneous localization and map change update (SLAMCU) algorithm to detect and update the HD map changes.
View Article and Find Full Text PDF