Publications by authors named "Kiba Y"

Two novel aromatic polyketides, penicanesins J and K (1, 2), were isolated from the marine-derived fungus Didymella aeria, along with the known compound integrastatin B (3). The structures of the new compounds were determined by NMR spectroscopy and synthetic methods. The isolated compounds were tested for monoamine oxidase (MAO) B inhibition, anti-amyloid beta (Aβ) aggregation, and protective activity against HO-induced cell death in human neuroblastoma SH-SY5Y cells.

View Article and Find Full Text PDF

This study proposes a sequential liquid dispensing method using a centrifugal microfluidic device operating at a constant rotational speed for the multiplexed genetic detection of nucleic acid targets across multiple samples in a single operation. A pair of passive valves integrated into each microchamber enabled the liquid to fill towards the center of rotation against the centrifugal force, facilitating the complete removal of air inside the microchamber. Liquid manipulation can be achievable without any surface coating of the device by exploiting the inherent hydrophobicity of the polymer.

View Article and Find Full Text PDF

The emergence of coronavirus disease 2019 (COVID-19), a novel identified pneumonia resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has significantly impacted and posed significant challenges to human society. The papain-like protease (PLpro) found in the nonstructural protein 3 of SARS-CoV-2 plays a vital role in viral replication. Moreover, PLpro disrupts the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 from host proteins.

View Article and Find Full Text PDF

Papain-like protease (PLpro) enzyme plays a vital role in viral replication as it breaks down polyproteins and disrupts the host's immune response. There are few reports on Kampo formulas that focus on PLpro activity. In this study, we evaluated the inhibitory effects of senkyuchachosan, a traditional Japanese medicine, on PLpro of SARS-CoV-2, the virus responsible for causing COVID-19.

View Article and Find Full Text PDF

A novel tricyclic polyketide, curvulanone (1), was isolated from the marine-derived fungus Curvularia aeria. The structure of 1 was determined by NMR and single-crystal X-ray crystallography. 1 had a cyclopentabenzopyranone with 3-acetic acid structure that is rarely found in natural compounds.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread as a pandemic and caused damage to people's lives and countries' economies. The spike (S) protein of SARS-CoV-2 contains a cleavage motif, Arg-X-X-Arg, for furin and furin-like enzymes at the boundary of the S1/S2 subunits. Given that cleavage plays a crucial role in S protein activation and viral entry, the cleavage motif was selected as the target.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a pandemic and has inflicted enormous damage on the lives of the people and economy of many countries worldwide. However, therapeutic agents against SARS-CoV-2 remain unclear. SARS-CoV-2 has a spike protein (S protein), and cleavage of the S protein is essential for viral entry.

View Article and Find Full Text PDF

Cell adhesion plays a crucial role in candidiasis through invasion of the human body and obtaining resistance to drugs by forming biofilms. Cell adhesion thus is a critical target for combating candidiasis by preventing the entry of fungal hyphae into the epithelium. We report here that dehydrocurvularin (1), isolated from the marine-derived fungus Curvularia aeria, exhibited anti-fungal activities for Candida albicans and Candida auris.

View Article and Find Full Text PDF

Poria, the dried sclerotium of Wolfiporia cocos, is a medicinal mushroom that is widely used in traditional Japanese medicine. The fruit body of W. cocos is rarely found in the natural environment in Japan, therefore an optimized technique for fruit body formation is essential for producing new strains through crossbreeding and for biological research.

View Article and Find Full Text PDF

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a cleavage motif R-X-X-R for furin-like enzymes at the boundary of the S1/S2 subunits. The cleavage of the site by cellular proteases is essential for S protein activation and virus entry. We screened the inhibitory effects of crude drugs on in vitro furin-like enzymatic activities using a fluorogenic substrate with whole-cell lysates.

View Article and Find Full Text PDF

Hemp ( L.) seed contains high contents of various nutrients, including fatty acids and proteins. Cannabidiol (CBD) is a non-psychoactive compound that can be extracted from and used for treating epilepsy and pain.

View Article and Find Full Text PDF

A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide.

View Article and Find Full Text PDF

Background: The risk of transferring blood-borne infections during transfusion is continually increasing because of newly emerging and reemerging viruses. Development of a rapid screening method for emerging viruses that might be transmitted by transfusion is required to eliminate such pathogens during blood donor screening. Owing to increased use of human materials in organ transplants and cell therapy, the risk of donor-transmitted viral infections is also increasing.

View Article and Find Full Text PDF

We investigated the capillary electrophoretic behavior of single-stranded DNA fragments in methylcellulose solution, and found that triplet-repeat DNA showed anomalously faster mobilities than DNA markers with random sequence. Through the further study on the electrophoretic data, reptation model is proven appropriate to describe the migration of DNA under our experimental conditions. Accordingly, with the equations based on reptation theory, we could obtain the persistence length of DNA fragments and find that these values of triplet-repeat DNAs are larger than that of DNA markers with random sequence, which means the former DNAs are less flexible than the latter ones when they migrate in the electric field.

View Article and Find Full Text PDF

The molecular characteristics of the monolayers of astaxanthin with polar group on the beta-ionone ring in the molecule and beta-carotene without polar group and their interactions in mixed carotenoid-phospholipid monolayers and the effects of carotenoids on the phase behavior of the phospholipid bilayers were examined by the monolayer technique and differential scanning calorimetry (DSC). We found from the monolayer study that beta-carotene had an amphiphilic nature. The molecular assembly of astaxanthin in the monolayer at the hydrophobic/hydrophilic interface was more stable than that of beta-carotene.

View Article and Find Full Text PDF

The LIGA (Lithographie Galvanoformung Abformung) process using synchrotron radiation lithography is applied to the microfabrication of capillary array electrophoresis (CAE) device. Laser-induced fluorescence detection system for the CAE device has been constructed by the modification of laser confocal fluorescence microscopy. DNA molecules were detected during migrating in the microchannels filled with polymer separation matrices under electric field to optimize the separation conditions for DNA analysis.

View Article and Find Full Text PDF

A laser-induced fluorescence detection system coupled with a highly sensitive silicon-intensified target (SIT) camera is successfully applied to the imaging of a band for DNA fragment labeling by fluorescence dye in a microchannel, and to the visualizing of the separation process on a microfabricated chip. We demonstrated that an only 6 mm separation channel is sufficient for the separation of triplet repeat DNA fragment and DNA molecular marker within only 12 s. The separation using the microfabricated capillary electrophoresis device is confirmed to be at least 18 times faster than the same separation carried out by conventional capillary electrophoresis with 24.

View Article and Find Full Text PDF

We investigated the electrophoretic behavior of triplet repeat DNA fragments by capillary electrophoresis and found triplet repeat DNA fragments showed unusual mobilities compared with those of commercially available DNA molecular marker. The electrophoretic data are analyzed by means of Ogston model and the mechanism of a change in mobility of triplet repeat DNA is discussed. The unusual mobilities are caused by the characteristic higher-order structure formed by GC-rich triplet repeat DNA.

View Article and Find Full Text PDF