Publications by authors named "Kianoosh Ghazi"

Brain strain is increasingly being used in helmet design and safety performance evaluation as it is generally considered as the primary mechanism of concussion. In this study, we investigate whether different helmet designs can meaningfully alter brain strains using two commonly used metrics, peak maximum principal strain (MPS) of the whole brain and cumulative strain damage measure (CSDM). A convolutional neural network (CNN) that instantly produces detailed brain strains is first tested for accuracy for helmeted head impacts.

View Article and Find Full Text PDF

Conventional kinematics-based brain injury metrics often approximate peak maximum principal strain (MPS) of the whole brain but ignore the anatomical location of occurrence. In this study, we develop effective impact kinematics consisting of peak rotational velocity and the associated rotational axis to preserve not only peak MPS but also spatially detailed MPS. A pre-computed brain response atlas (pcBRA) serves as a common reference.

View Article and Find Full Text PDF

Head injury models are notoriously time consuming and resource demanding in simulations, which prevents routine application. Here, we extend a convolutional neural network (CNN) to instantly estimate element-wise distribution of peak maximum principal strain (MPS) of the entire brain (>36 k speedup accomplished on a low-end computing platform). To achieve this, head impact rotational velocity and acceleration temporal profiles are combined into two-dimensional images to serve as CNN input for training and prediction of MPS.

View Article and Find Full Text PDF

Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations.

View Article and Find Full Text PDF