The evolution of protein-coding genes proceeds as mutations act on two main dimensions: regulation of transcription level and the coding sequence. The extent and impact of the connection between these two dimensions are largely unknown because they have generally been studied independently. By measuring the fitness effects of all possible mutations on a protein complex at various levels of promoter activity, we show that promoter activity at the optimal level for the wild-type protein masks the effects of both deleterious and beneficial coding mutations.
View Article and Find Full Text PDFWe present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2022
Type B dihydrofolate reductases (DfrB) are intrinsically highly resistant to the widely used antibiotic trimethoprim, posing a threat to global public health. The ten known DfrB family members have been strongly associated with genetic material related to the application of antibiotics. Several genes were associated with multidrug resistance contexts and mobile genetic elements, integrated both in chromosomes and plasmids.
View Article and Find Full Text PDFChemically modified proteins are increasingly being tested and approved as therapeutic products. Batch-to-batch homogeneity is crucial to ensure safety and quality of therapeutic products. Highly selective protein modification may be achieved using enzymatic routes.
View Article and Find Full Text PDF