Early detection of prostate cancer is critical for successful treatment and survival. However, current diagnostic methods such as prostate-specific antigen (PSA) testing and digital rectal examination (DRE) have limitations in accuracy, specificity, and sensitivity. Recent research suggests that urinary volatile organic compounds (VOCs) could serve as potential biomarkers for prostate cancer diagnosis.
View Article and Find Full Text PDFThe lack of accuracy in the current prostate specific antigen (PSA) test for prostate cancer (PCa) screening causes around 60-75% of unnecessary prostate biopsies. Therefore, alternative diagnostic methods that have better accuracy and can prevent over-diagnosis of PCa are needed. Researchers have examined various potential biomarkers for PCa, and of those fatty acids (FAs) markers have received special attention due to their role in cancer metabolomics.
View Article and Find Full Text PDFProstate cancer (PCa) is the second leading cause of cancer-related death in American men after lung cancer. The current PCa diagnostic method, the serum prostate-specific antigen (PSA) test, is not specific, thus, alternatives are needed to avoid unnecessary biopsies and over-diagnosis of clinically insignificant PCa. To explore the application of metabolomics in such effort, urine samples were collected from 386 male adults aged 44-93 years, including 247 patients with biopsy-proven PCa and 139 with biopsy-proven negative results.
View Article and Find Full Text PDFBackground: Cancer detection presents challenges regarding invasiveness, cost, and reliability. As a result, exploring alternative diagnostic methods holds significant clinical importance. Urinary metabolomic profiling has emerged as a promising avenue; however, its application for cancer diagnosis may be influenced by sample preparation or storage conditions.
View Article and Find Full Text PDFFluorotelomer alcohols (FTOHs) are one of the major classes of per- and polyfluoroalkyl substances (PFAS). Due to their potential toxicity, persistence, and ubiquitous presence in the environment, some common PFAS are voluntarily phased out; while FTOHs are used as alternatives to conventional PFAS. FTOHs are precursors of perfluorocarboxylic acids (PFCAs) and therefore they are commonly detected in water matrices, which eventually indicate PFAS contamination in drinking water supplies and thus a potential source of human exposure.
View Article and Find Full Text PDF