J Microbiol Immunol Infect
April 2024
Background: The COVID-19 pandemic is spreading rapidly around the world, causing countries to impose lockdowns and efforts to develop vaccines on a global scale. However, human-to-animal and animal-to-human transmission cannot be ignored, as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread rapidly in farmed and wild animals. This could create a worrying cycle of SARS-CoV-2 spillover from humans to animals and spillback of new strains back into humans, rendering vaccines ineffective.
View Article and Find Full Text PDFProgrammable biomolecule-mediated computing is a new computing paradigm as compared to contemporary electronic computing. It employs nucleic acids and analogous biomolecular structures as information-storing and -processing substrates to tackle computational problems. It is of great significance to investigate the various issues of programmable biomolecule-mediated processors that are capable of automatically processing, storing, and displaying information.
View Article and Find Full Text PDFAlthough lessons have been learned from previous severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, the rapid evolution of the viruses means that future outbreaks of a much larger scale are possible, as shown by the current coronavirus disease 2019 (COVID-19) outbreak. Therefore, it is necessary to better understand the evolution of coronaviruses as well as viruses in general. This study reports a comparative analysis of the amino acid usage within several key viral families and genera that are prone to triggering outbreaks, including coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], SARS-CoV, MERS-CoV, human coronavirus-HKU1 [HCoV-HKU1], HCoV-OC43, HCoV-NL63, and HCoV-229E), influenza A (H1N1 and H3N2), flavivirus (dengue virus serotypes 1 to 4 and Zika) and ebolavirus (Zaire, Sudan, and Bundibugyo ebolavirus).
View Article and Find Full Text PDFThe correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents a technique for the classification of protein secondary structures based on protein "signal-plotting" and the use of the Fourier technique for digital signal processing.
View Article and Find Full Text PDFBecause of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems.
View Article and Find Full Text PDFDNA-based computing is a novel technique to tackle computationally difficult problems, in which computing time grows exponentially corresponding to problematic size. A strategic assignment problem is a typical nondeterministic polynomial problem, which is often associated with strategy applications. In this Letter, a new approach dealing with strategic assignment problems is proposed based on manipulating DNA strands, which is believed to be better than the conventional silicon-based computing in solving the same problem.
View Article and Find Full Text PDF