IEEE Trans Biomed Circuits Syst
June 2022
An 8-channel AFE with a group-chopping instrumentation amplifier (GCIA) is proposed for bio-potential recording applications. The group-chopping technique cascades chopper switches to progressively swap channels and dynamically removes gain mismatch among all channels. An 8-phase non-overlapping clocking scheme is developed and achieves excellent between-channel gain mismatch characteristics.
View Article and Find Full Text PDFObjective: Peripheral neural interface (PNI) with a stable integration of synthetic elements with neural tissue is key for successfulneuro-prosthetic applications. An inevitable phenomenon of reactive fibrosis is a primary hurdle for long term functionality of PNIs. This proof-of-concept study aimed to fabricate and test a novel, stable PNI that harnesses fibro-axonal outgrowth at the nerve end and includes fibrosis in the design.
View Article and Find Full Text PDFElectrical excitation of neural tissue has wide applications, but how electrical stimulation interacts with neural tissue remains to be elucidated. Here, we propose a new theory, named the Circuit-Probability theory, to reveal how this physical interaction happen. The relation between the electrical stimulation input and the neural response can be theoretically calculated.
View Article and Find Full Text PDFWe have developed a 5-electrode recording system that combines an implantable electromyography (EMG) device package with transcutaneous inductive power transmission, near-infrared (NIR) transcutaneous data telemetry and 3 Mbps Wi-Fi data acquisition for chronic EMG recording in vivo. This system comprises a hermetically-sealed single-chip, 5-electrode Implantable EMG Acquisition Device (IEAD), a custom external powering and Implant Telemetry Module (ITM), and a custom Wi-Fi-based Raspberry Pi-based Data Acquisition (RaspDAQ) and relay device. The external unit (ITM and RaspDAQ) is powered entirely by a single battery to achieve the objective of untethered EMG recording, for the convenience of clinicians and animal researchers.
View Article and Find Full Text PDFThe human sense of touch is essential for dexterous tool usage, spatial awareness, and social communication. Equipping intelligent human-like androids and prosthetics with electronic skins-a large array of sensors spatially distributed and capable of rapid somatosensory perception-will enable them to work collaboratively and naturally with humans to manipulate objects in unstructured living environments. Previously reported tactile-sensitive electronic skins largely transmit the tactile information from sensors serially, resulting in readout latency bottlenecks and complex wiring as the number of sensors increases.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2016
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions.
View Article and Find Full Text PDFIntroduction: A long-term peripheral neural interface is an area of intense research. The use of electrode interfaces is limited by the biological response to the electrode material.
Methods: We created an electrode construct to harbor the rat sciatic nerve with interposition of autogenous adipose tissue between the nerve and the electrode.
Annu Int Conf IEEE Eng Med Biol Soc
October 2015
Neuroprosthetic devices that interface with the nervous system to restore functional motor activity offer a viable alternative to nerve regeneration, especially in proximal nerve injuries like brachial plexus injuries where muscle atrophy may set in before nerve re-innervation occurs. Prior studies have used control signals from muscle or cortical activity. However, nerve signals are preferred in many cases since they permit more natural and precise control when compared to muscle activity, and can be accessed with much lower risk than cortical activity.
View Article and Find Full Text PDFPeripheral nerve injuries with large gaps and long nerve regrowth paths are difficult to repair using existing surgical techniques, due to nerve degeneration and muscle atrophy. This paper proposes a Bionic Neural Link (BNL) as an alternative way for peripheral nerve repair. The concept of the BNL is described, along with the hypothetical benefits.
View Article and Find Full Text PDF