Bumblebees are a key pollinator. Understanding the factors that influence the timing of sleep and foraging trips is important for efficient foraging and pollination. Here, we illustrate how individual locomotor activity monitoring and colony-wide radio frequency identification tracking can be combined to analyze the effects of agrochemicals like neonicotinoids on locomotor and foraging rhythmicity and sleep quantity/quality in bumblebees.
View Article and Find Full Text PDFNeonicotinoids are the most widely used insecticides in the world and are implicated in the widespread population declines of insects including pollinators. Neonicotinoids target nicotinic acetylcholine receptors which are expressed throughout the insect central nervous system, causing a wide range of sub-lethal effects on non-target insects. Here, we review the potential of the fruit fly to model the sub-lethal effects of neonicotinoids on pollinators, by utilizing its well-established assays that allow rapid identification and mechanistic characterization of these effects.
View Article and Find Full Text PDFGlobally, neonicotinoids are the most used insecticides, despite their well-documented sub-lethal effects on beneficial insects. Neonicotinoids are nicotinic acetylcholine receptor agonists. Memory, circadian rhythmicity and sleep are essential for efficient foraging and pollination and require nicotinic acetylcholine receptor signalling.
View Article and Find Full Text PDFNeonicotinoids have been implicated in the large declines observed in insects such as bumblebees, an important group of pollinators. Neonicotinoids are agonists of nicotinic acetylcholine receptors that are found throughout the insect central nervous system and are the main mediators of synaptic neurotransmission. These receptors are important for the function of the insect central clock and circadian rhythms.
View Article and Find Full Text PDFChemical communication is a dominant method of communication throughout the animal kingdom and can be especially important in group-living animals in which communicating threats, either from predation or other dangers, can have large impacts on group survival. Social insects, in particular, have evolved a number of pheromonal compounds specifically to signal alarm. There is predicted to be little selection for interspecific variation in alarm cues because individuals may benefit from recognizing interspecific as well as conspecific cues and, consequently, alarm cues are not normally thought to be used for species or nestmate recognition.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
December 2013
Honey bees communicate to nestmates locations of resources, including food, water, tree resin and nest sites, by making waggle dances. Dances are composed of repeated waggle runs, which encode the distance and direction vector from the hive or swarm to the resource. Distance is encoded in the duration of the waggle run, and direction is encoded in the angle of the dancer's body relative to vertical.
View Article and Find Full Text PDF