The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells.
View Article and Find Full Text PDFReactive oxygen species (ROS) are implicated in many human diseases, including cancer. We have previously demonstrated that ROS increased the expression and activity of the chemokine receptor, CXCR4, which enhanced metastatic functions in prostate cancer cells. Studies have also revealed that CXCR4 and its ligand, SDF-1α, promoted ROS accumulation; however the source of ROS was not investigated.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood.
View Article and Find Full Text PDF