Publications by authors named "KiNam Park"

Poorly soluble drugs often encounter low bioavailability and erratic absorption patterns in the clinical setting. Due to the rising number of compounds having solubility issues, finding ways to enhance the solubility of drugs is one of the major challenges in the pharmaceutical industry today. Polymeric micelles, which form upon self-assembly of amphiphilic macromolecules, can act as solubilizing agents for delivery of poorly soluble drugs.

View Article and Find Full Text PDF

Since 1960 when the history of modern hydrogels began significant progress has been made in the field of controlled drug delivery. In particular, recent advances in the so-called smart hydrogels have made it possible to design highly sophisticated formulations, e.g.

View Article and Find Full Text PDF

One difficulty of diagnosing and treating cancer is that it is very challenging to detect cancers in the early stages before metastasis occurs. A variety of imaging modalities needs to be used from non-invasive, moderate resolution modalities, such as magnetic resonance imaging (MRI) to very high-resolution (e.g.

View Article and Find Full Text PDF

Targeted drug delivery to tumor sites is one of the ultimate goals in drug delivery. Recent progress in nanoparticle engineering has certainly improved drug targeting, but the results are not as good as expected. This is largely due to the fact that nanoparticles, regardless of how advanced they are, find the target as a result of blood circulation, like the conventional drug delivery systems do.

View Article and Find Full Text PDF

The condensed version: Thiolated glycol chitosan can form stable nanoparticles with polymerized siRNAs through charge-charge interactions and self-cross-linking (see scheme). This poly-siRNA/glycol chitosan nanoparticles (psi-TGC) provided sufficient in vivo stability for systemic delivery of siRNAs. Knockdown of tumor proteins by psi-TGC resulted in a reduction in tumor size and vascularization.

View Article and Find Full Text PDF

Polymeric nanoparticles, capable of encapsulating imaging agents and therapeutic drugs, have significant advantages for simultaneous diagnosis and therapy. Nonetheless, improvements in the loading contents of the active agents are needed to achieve enhanced imaging and effective therapeutic outcomes. Aiming to make these improvements, a hydrotropic micelle (HM) was explored to encapsulate superparamagnetic iron oxide nanoparticles (SPIONs) as the magnetic resonance (MR) imaging agent and paclitaxel (PTX) as the hydrophobic anticancer drug.

View Article and Find Full Text PDF

Tumor-targeted imaging and therapy have been the challenging issue in the clinical field. Herein, we report tumor-targeting hyaluronic acid nanoparticles (HANPs) as the carrier of the hydrophobic photosensitizer, chlorin e6 (Ce6) for simultaneous photodynamic imaging and therapy. First, self-assembled HANPs were synthesized by chemical conjugation of aminated 5β-cholanic acid, polyethylene glycol (PEG), and black hole quencher3 (BHQ3) to the HA polymers.

View Article and Find Full Text PDF

The success of drug eluting stents (DESs) has been challenged by the manifestation of late stent thrombosis after DES implantation. The incomplete regeneration of the endothelial layer poststenting triggers adverse signaling processes precipitating in thrombosis. Various approaches have been attempted to prevent thrombosis, including the delivery of biological agents, such as estradiol, that promote endothelialization, and the use of natural polymers as coating materials.

View Article and Find Full Text PDF

Introduction: Considerable advances have been made to hydrogels with the development of faster swelling superporous hydrogels (SPHs). These new-generation hydrogels have large numbers of interconnected pores, giving them the capacity to absorb large amounts of water at an accelerated rate. This gives SPHs the ability to be used in a variety of novel drug delivery applications, such as gastric retention and peroral intestinal delivery of proteins and peptides.

View Article and Find Full Text PDF

The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells.

View Article and Find Full Text PDF

Vein graft intimal hyperplasia remains the leading cause of graft failure, despite many pharmacological approaches that have failed to translate to human therapy. We investigated whether local suppression of inflammation and fibrosis with MMI-0100, a novel peptide inhibitor of Mitogen Activated Protein Kinase Activated Protein Kinase II (MK2), would be an alternative strategy to reduce cell proliferation and intimal hyperplasia. The cell permeant peptide MMI-0100 was synthesized using standard Fmoc chemistry.

View Article and Find Full Text PDF