Despite the advancement of the Internet of Things (IoT) and portable devices, the development of zero-biased sensing systems for the dual detection of light and gases remains a challenge. As an emerging technology, direct energy conversion driven by intriguing physical properties of two-dimensional (2D) materials can be realized in nanodevices or a zero-biased integrated system. In this study, we unprecedentedly attempted to exploit the photostimulated pyrothermoelectric coupling of two-dimensional SnSe for use in zero-biased multimodal transducers for the dual detection of light and gases.
View Article and Find Full Text PDFConstructing pertinent nanoarchitecture with abundant exposed active sites is a valid strategy for boosting photocatalytic hydrogen generation. However, the controllable approach of an ideal architecture comprising vertically standing transition metal chalcogenides (TMDs) nanosheets on a 3D graphene network remains challenging despite the potential for efficient photocatalytic hydrogen production. In this study, we fabricated edge-rich 3D structuring photocatalysts involving vertically grown TMDs nanosheets on a 3D porous graphene framework (referred to as 3D Gr).
View Article and Find Full Text PDFPortable and personalized artificial intelligence (AI)-driven sensors mimicking human olfactory and gustatory systems have immense potential for the large-scale deployment and autonomous monitoring systems of Internet of Things (IoT) devices. In this study, an artificial Q-grader comprising surface-engineered zinc oxide (ZnO) thin films is developed as the artificial nose, tongue, and AI-based statistical data analysis as the artificial brain for identifying both aroma and flavor chemicals in coffee beans. A poly(vinylidene fluoride-co-hexafluoropropylene)/ZnO thin film transistor (TFT)-based liquid sensor is the artificial tongue, and an Au, Ag, or Pd nanoparticles/ZnO nanohybrid gas sensor is the artificial nose.
View Article and Find Full Text PDFThis study investigated the impact of Methyl Jasmonate (MeJA) application on the nutritional content and yield of five different colored radish microgreens. Microgreens were produced without substrate and subjected to 0.5 mM and 1.
View Article and Find Full Text PDFStructural engineering and hybridization of heterogeneous 2D materials can be effective for advanced supercapacitor. Furthermore, architectural design of electrodes particularly with vertical construction of structurally anisotropic graphene nanosheets, can significantly enhance the electrochemical performance. Herein, MXene-derived TiO nanocomposites hybridized with vertical graphene is synthesized via CO laser irradiation on MXene/graphene oxide nanocomposite film.
View Article and Find Full Text PDFGrowing microgreens on trays without substrate in a vertical multilayered growing unit offers several advantages over traditional agriculture methods. This study investigated the yield performance and nutritional quality of five selections of radish microgreens grown in sprouting trays, without a substrate using only water, in an indoor multilayer cultivation system using artificial light. Various parameters were measured, including fresh weight, dry matter, chlorophyll, minerals, amino acids, phenolics, flavonoids, anthocyanins, vitamin C, glucosinolates, and antioxidant activity with four different assays.
View Article and Find Full Text PDFFilm-type shape-configurable speakers with tunable sound directivity are in high demand for wearable electronics. Flexible, thin thermoacoustic (TA) loudspeakers-which are free from bulky vibrating diaphragms-show promise in this regard. However, configuring thin TA loudspeakers into arbitrary shapes is challenging because of their low sound pressure level (SPL) under mechanical deformations and low conformability to other surfaces.
View Article and Find Full Text PDFThe precisely tailored refractive index of optical materials is the key to utilizing and manipulating light during its propagation through the matrix, thereby improving their application performances. In this paper, mesoporous metal fluoride films with engineered composition (MgF :LaF ) are demonstrated to achieve finely tunable refractive indices. These films are prepared using a precursor-derived one-step assembly approach via the simple mixing of precursor solutions (Mg(CF OO) and La(CF OO) ); then pores are formed simultaneously during solidification owing to the inherent instability of La(CF OO) .
View Article and Find Full Text PDFTo date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF/LaF multilayers.
View Article and Find Full Text PDFThe recent introduction of alkali metal halide catalysts for chemical vapor deposition (CVD) of transition metal dichalcogenides (TMDs) has enabled remarkable two-dimensional (2D) growth. However, the process development and growth mechanism require further exploration to enhance the effects of salts and understand the principles. Herein, simultaneous predeposition of a metal source (MoO ) and salt (NaCl) by thermal evaporation is adopted.
View Article and Find Full Text PDFMXenes possess the characteristics required for high-performance supercapacitors, such as high metallic conductivity and electrochemical activity, but their full potential remains unrealized owing to their tendency to self-restack when fabricated into an electrode. Designing an MXene interlayer with an effective intercalant has, therefore, become an important criterion to alleviate the restacking issue while also synergistically interact with MXene to further improve its electrochemical activity. This study reports the intercalation of 1D π-d conjugated coordination polymer (Ni-BTA) within the Ti C T nanosheet for the fabrication of a highly efficient supercapacitor electrode.
View Article and Find Full Text PDFA challenge for chemiresistive-type gas sensors distinguishing mixture gases is that for highly accurate recognition, massive data processing acquired from various types of sensor configurations must be considered. The impact of data processing is indeed ineffective and time-consuming. Herein, we systemically investigate the effect of the selectivity for a target gas on the prediction accuracy of gas concentration machine learning based on a support vector machine model.
View Article and Find Full Text PDFOrganic polymer-based dielectrics with intrinsic mechanical flexibility and good processability are excellent candidates for the dielectric layer of flexible electronics. These polymer films can become even more rigid and electrically robust when modified through cross-linking processes. Moreover, the composites formed by dispersing nanoscale inorganic fillers in a polymer matrix can exhibit further improved polarization property.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Many research groups have been interested in the quartz crystal microbalance (QCM)-based gas sensors due to their superb sensitivity originated from direct mass sensing at the ng level. Despite such high sensitivities observed from QCM sensors, their ability to identify gas compounds still needs to be enhanced. Herein, we report a highly facile method that utilizes microcolumns integrated on a QCM gas-responsive system with enhanced chemical selectivity for sensing and ability to identify volatile organic compound single gases.
View Article and Find Full Text PDFThe synthesis of organic-inorganic hybrid materials using individual metal-organic molecules as building blocks has been of interest for the last few decades. These hybrid materials are appealing due to the opportunities they provide with respect to a variety of potential applications. Here, we report a novel metal-organic nanostructure made by a hybrid synthetic process that is comprised of thermal evaporation (TE) and atomic layer deposition (ALD) for the metalation of an organic layer.
View Article and Find Full Text PDFTo gain the target functionality of graphene for gas detection, nonfocused and large-scale compatible MeV electron beam irradiation on graphene with Ag patterns is innovatively adopted in air for chemical patterning of graphene. This strategy allows the metal-assisted site-specific oxidation of graphene to realize monolithically integrated graphene-chemically patterned graphene (CPG)-graphene homojunction-based gas sensors. The size-tunable CPG patterns can be mediated by regulating the size of Ag prepatterns.
View Article and Find Full Text PDFPerhydropolysilazane (PHPS), an inorganic polymer composed of Si-N and Si-H, has attracted much attention as a precursor for gate dielectrics of thin-film transistors (TFTs) due to its facile processing even at a relatively low temperature. However, an in-depth understanding of the tunable dielectric behavior of PHPS-derived dielectrics and their effects on TFT device performance is still lacking. In this study, the PHPS-derived dielectric films formed at different annealing temperatures have been used as the gate dielectric layer for solution-processed indium zinc oxide (IZO) TFTs.
View Article and Find Full Text PDFAlthough energy-storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all-solid-state energy-storage devices with enhanced stability is proposed. A new eco-friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS-LiSMC).
View Article and Find Full Text PDFThe synthesis of low cost, high efficacy, and durable hydrogen evolution electrocatalysts from the non-noble metal group is a major challenge. Herein, we establish a simple and inexpensive chemical reduction method for producing molybdenum carbide (MoC) and tungsten carbide (WC) nanoparticles that are efficient electrocatalysts in alkali and acid electrolytes for hydrogen evolution reactions (HER). MoC exhibits outstanding electrocatalytic behavior with an overpotential of -134 mV in acid medium and of -116 mV in alkaline medium, while WC nanoparticles require an overpotential of -173 mV in acidic medium and -130 mV in alkaline medium to attain a current density of 10 mA cm.
View Article and Find Full Text PDFLow-dimensional nanostructures and their complementary hybridization techniques are in the vanguard of technological advances for applications in transparent and flexible nanoelectronics due to the intriguing electrical properties related to their atomic structure. In this study, we demonstrated that welding of Ag nanowires (NWs) encapsulated in graphene was stimulated by flux-optimized, high-energy electron beam irradiation (HEBI) under ambient conditions. This methodology can inhibit the oxidation of Ag NWs which is induced by the inevitably generated reactive ozone as well as improve of their electrical conductivity.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS) and tungsten diselenide (WSe), have recently attracted attention for their applicability as building blocks for fabricating advanced functional materials. In this study, a high quality hybrid material based on 2D TMD nanosheets and ZnO nanopatches was demonstrated. An organic promoter layer was employed for the large-scale growth of the TMD sheet, and atomic layer deposition (ALD) was utilized for the growth of ZnO nanopatches.
View Article and Find Full Text PDFDespite many encouraging properties of transition metal dichalcogenides (TMDs), a central challenge in the realm of industrial applications based on TMD materials is to connect the large-scale synthesis and reproducible production of highly crystalline TMD materials. Here, the primary aim is to resolve simultaneously the two inversely related issues through the synthesis of MoS Se ternary alloys with customizable bichalcogen atomic (S and Se) ratio via atomic-level substitution combined with a solution-based large-area compatible approach. The relative concentration of bichalcogen atoms in the 2D alloy can be effectively modulated by altering the selenization temperature, resulting in 4 in.
View Article and Find Full Text PDFPiezoelectric materials convert external mechanical force into electrical energy, due to the breaking of the centrosymmetry of the atomic structure. Piezoelectricity-based nano-generators (PNGs) based on two-dimensional transition metal dichalcogenides (TMDs) can generate electrical energy stably by the piezoelectric effect at their nanoscale thickness. However, the commercialization of TMD-based PNGs is limited by their poor piezoelectric performance and microscale energy harvesting.
View Article and Find Full Text PDFHere, we present a new approach to dual-channel gas sensors on the basis of a role-allocated graphene/ZnO heterostructure, formed by the complementary hybridization of graphene and a ZnO thin film. The method enables cyclic and reproducible gas response as well as high gas response. The role allocation of graphene and ZnO was verified by studying the electrical transport properties of the heterostructure.
View Article and Find Full Text PDF