Triple-negative breast cancer (TNBC), the most aggressive subtype, presents a critical challenge due to the absence of approved targeted therapies. Hence, there is an urgent need to identify effective therapeutic targets for this condition. While epidermal growth factor receptor (EGFR) is prominently expressed in TNBC and recognized as a therapeutic target, anti-EGFR therapies have yet to gain approval for breast cancer treatment due to their associated side effects and limited efficacy.
View Article and Find Full Text PDFBackground: The biological function of mesenchymal stem-like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression.
Methods: In vitro and in vivo co-culture systems were used to analyze ECM remodelling and GBM infiltration.
Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored.
View Article and Find Full Text PDFRadiation therapy is a current standard-of-care treatment and is used widely for GBM patients. However, radiation therapy still remains a significant barrier to getting a successful outcome due to the therapeutic resistance and tumor recurrence. Understanding the underlying mechanisms of this resistance and recurrence would provide an efficient approach for improving the therapy for GBM treatment.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are regarded as a strong biomarker which includes clinically valuable information. However, CTCs are very rare and require precise separation and detection for effective clinical applications. Furthermore, downstream analysis has become necessary to identify the distinct sub-population of CTCs that causes metastasis.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms that underlie the aggressive behavior and relapse of breast cancer may help in the development of novel therapeutic interventions. CUB-domain-containing protein 1 (CDCP1), a transmembrane adaptor protein, is highly maintained and required in the context of cellular metastatic potential in triple-negative breast cancer (TNBC). For this reason, gene expression levels of CDCP1 have been considered as a prognostic marker in TNBC.
View Article and Find Full Text PDFIonizing radiation is widely used for patient with glioblastoma (GBM). However, the effect of radiation on patient survival is marginal and upon recurrence tumors frequently shift toward mesenchymal subtype adopting invasiveness. Here, we show that ionizing radiation affects biomechanical tension in GBM microenvironment and provides proinvasive extracellular signaling cue, hyaluronic acid (HA)-rich condition.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
June 2019
Receptor tyrosine kinase Mer (MerTK) has been shown to be highly expressed in Glioblastoma multiforme (GBM) in comparison to its healthy counterpart and is implicated in brain tumorigenesis. Clarifying the underlying mechanism of MerTK induced invasiveness would result in novel strategies to improve patient's response to chemotherapeutics. In vitro and in vivo assays were performed to examine the functional role of cancer stem sell (CSC) maintenance in MerTK associated invasiveness.
View Article and Find Full Text PDFBasal type breast cancer is the most aggressive and has mesenchymal features with a high metastatic ability. However, the signaling node that determines the basal type features in breast cancer remains obscure. Here, we report that FYN among SRC family kinases is required for the maintenance of basal type breast cancer subtype.
View Article and Find Full Text PDFAdvanced or progressive cancers share common traits such as altered transcriptional modulation, genetic modification, and abnormal post-translational regulation. These processes influence protein stability and cellular activity. Intercellular adhesion molecule-1 (ICAM-1) is involved in the malignant progression of various human cancers, including breast, liver, renal, and pancreatic cancers, but protein stability has not been deal with in metastatic breast cancer.
View Article and Find Full Text PDFThe marine mussel-inspired properties of catechol, adhesiveness and cohesiveness, have been applied with pH control to fabricate hollow particles using a silica core and catechol-modified hyaluronic acid (HA-CA) shell for an anticancer drug carrier. The competition between adhesive and cohesive properties of catechol with different pH values leads to various structures, a rough catechol modified HA (HA-CA) shell at pH 5.5, monodisperse spherical silica@HA-CA particles at pH 7.
View Article and Find Full Text PDFHyaluronic acid (HA) is abundant in tumor microenvironment and closely associated with invasiveness of glioblastoma (GBM) cells. However, the cellular mechanism underlying HA-rich microenvironment in GBM remains unexplored. Here, we show that tumor-associated mesenchymal stem-like cells (tMSLCs) contribute to abundance of hyaluronic acid (HA) in tumor microenvironment through HA synthase-2 (HAS2) induction, and thereby enhances invasiveness of GBM cells.
View Article and Find Full Text PDFHighly resistant tumor cells are hard to treat at low doses of plasma. Therefore, researchers have gained more attention to development of enhancers for plasma therapy. Some enhancers could improve the efficacy of plasma towards selectivity of cancer cells damage.
View Article and Find Full Text PDFEpithelial to mesenchymal transition (EMT) is developmental process associated with cancer metastasis. Here, we found that breast carcinoma cells adopt epithelial-to-mesenchymal transition (EMT) in response to fractionated-radiation. Importantly, we show that Notch signaling is highly activated in fractionally-irradiated tumors as compared to non-irradiated tumors that are accompanied by an EMT.
View Article and Find Full Text PDFMetastasis, the primary cause of tumor cell transformation, is often activated during cancer invasion and progression and is associated with poor therapeutic outcomes. The effects of combined treatments that included PEG-coated gold nanoparticles (GNP) and cold plasma on epithelial-mesenchymal transition (EMT) and the maintenance of cancer stem cells (CSC) have not been described so far. Here, we report that co-treatment with GNP and cold plasma inhibited proliferation in cancer cells by abolishing the activation of the PI3K/AKT signaling axis.
View Article and Find Full Text PDFPoor prognosis of glioblastoma (GBM) is attributable to the propensity of tumor cells to infiltrate into the brain parenchyma. Protein kinase C (PKC) isozymes are highly expressed or aberrantly activated in GBM. However, how this signaling node translates to GBM cell invasiveness remains unknown.
View Article and Find Full Text PDFRecently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation.
View Article and Find Full Text PDFMetastasis of breast cancer is promoted by epithelial-mesenchymal transition (EMT). Emerging evidence suggests that STAT3 is a critical signaling node in EMT and is constitutively activated in many carcinomas, including breast cancer. However, its signaling mechanisms underlying persistent activation of STAT3 associated with EMT remain obscure.
View Article and Find Full Text PDFBasal-type breast cancers are among the most aggressive and deadly breast cancer subtypes, displaying a high metastatic ability associated with mesenchymal features. However, the molecular mechanisms underlying the maintenance of mesenchymal phenotypes of basal-type breast cancer cells remain obscure. Here, we report that KRAS is a critical regulator for the maintenance of mesenchymal features in basal-type breast cancer cells.
View Article and Find Full Text PDFDespite the fact that ionizing radiation (IR) is widely used as a standard treatment for breast cancer, much evidence suggests that IR paradoxically promotes cancer malignancy. However, the molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that irradiation activates SRC signaling among SRC family kinase proteins, thereby promoting malignant phenotypes such as invasiveness, expansion of the cancer stem-like cell population, and resistance to anticancer agents in breast cancer cells.
View Article and Find Full Text PDFMetastasis is a challenging clinical problem and the primary cause of death in breast cancer patients. However, there is no therapeutic agent against metastasis of breast cancer cells. Here we report that phloroglucinol, a natural phlorotannin component of brown algae suppresses metastatic ability of breast cancer cells.
View Article and Find Full Text PDFGiven its contribution to malignant phenotypes of cancer, tumor hypoxia has been considered as a potential therapeutic problem. In the stressful microenvironment condition, hypoxia inducible factor 1 (HIF1) is well known to mediate the transcriptional adaptation of cells to hypoxia and acts as a central player for the process of hypoxia-driven malignant cancer progression. Here, we found that irradiation causes the HIF1α protein to stabilize, even in normoxia condition through activation of p38 MAPK, thereby promoting angiogenesis in tumor microenvironment and infiltrative property of glioma cells.
View Article and Find Full Text PDFGlioblastoma remains an incurable brain disease due to the prevalence of its recurrence. Considerable evidence suggests that glioma stem-like cells are responsible for glioma relapse after treatment, which commonly involves ionizing radiation. Here, we found that fractionated ionizing radiation (2 Gy/day for 3 days) induced glioma stem-like cell expansion and resistance to anticancer treatment such as cisplatin (50 μM) or taxol (500 nM), or by ionizing radiation (10 Gy) in both glioma cell lines (U87, U373) and patient-derived glioma cells.
View Article and Find Full Text PDF