In previous studies, the biological characteristics of the fungus Cladosporium phlei and its genetic manipulation by transformation were assessed to improve production of the fungal pigment, phleichrome, which is a fungal perylenequinone that plays an important role in the production of a photodynamic therapeutic agent. However, the low production of this metabolite by the wild-type strain has limited its application. Thus, we attempted to clone and characterize the genes that encode polyketide synthases (PKS), which are responsible for the synthesis of fungal pigments such as perylenequinones including phleichrome, elsinochrome and cercosporin.
View Article and Find Full Text PDFUV-mutagenesis was performed to obtain mutant strains that demonstrate altered production of phleichrome, a secondary metabolite of Cladosporium phlei. Among fifty mutants selected, based on the increased area and intensity of the purple pigment surrounding the colonies, the strain M0035 showed the highest production of phleichrome, more than seven fold over wild type. Plate cultures of the M0035 strain resulted in a total of 592 mg phleichrome consisting of 146 mg and 446 mg from the mycelia and agar media, respectively.
View Article and Find Full Text PDFWe previously used the Curtius rearrangement to synthesize various phenolic acid phenethyl urea compounds from phenolic acids and demonstrated their beneficial anti-oxidant and anti-cancer effects. Here, we investigated the effects of one of these synthetic compounds, (E)-1-(3,4-dihydroxystyryl)-3-(4-hydroxyphenethyl)urea (DSHP-U), on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, and cytokine secretion in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells.
View Article and Find Full Text PDFRecently, various phenolic acid phenethyl ureas (PAPUs) have been synthesized from phenolic acids by Curtius rearrangement for the development of more effective anti-oxidants. In this study, we examined the anti-tumor activity and cellular mechanism of the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1) using melanoma B16/F10 and M-3 cells. Results showed that PAPU1 inhibited the cell proliferation and viability, but did not induce cytotoxic effects on primary cultured fibroblasts.
View Article and Find Full Text PDFActeoside extracted from the leaves of Rehmannia glutinosa was examined to determine the mechanism(s) of its antioxidant properties. The deoxyribose assay system showed that acteoside has a high redox potential as electron donor, which generates hydroxyl radicals in an Fe3+-dependent manner similar to ascorbic acid. However, the antioxidant properties of acteoside differ from those of ascorbic acid in that the superoxide anion-mediated reduction of nitroblue tetrazolium was actively inhibited by acteoside but not by ascorbic acid.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2005
Apio north-methanocarbocyclic nucleosides 1-3 with bicyclo[3. 1.0]hexane template were first synthesized.
View Article and Find Full Text PDFOn the basis of the biological activity of neplanocin A and apio-dideoxyadenosine (apio-ddA), novel apio-neplanocin A analogues 5a-d, combining the properties of two nucleosides, were stereoselectively synthesized. The apio moiety of the target nucleosides 5a-d was stereoselectively introduced by treating lactol 10 with 37% formaldehyde in the presence of potassium carbonate. The carbasugar moiety of neplanocin A was successively built by exposing diene 12 on a Grubbs catalyst in methylene chloride.
View Article and Find Full Text PDFN-Ureido-quinoxalinedione derivatives have been discovered as leads for a novel series of dipeptidyl peptidase-IV (DPP-IV) inhibitors through high-throughput screening of our chemical library. A brief structure-activity relationship of the compounds was investigated. Among them, entry 5 showed the most potent inhibitory activity.
View Article and Find Full Text PDFA series of pyrazoloxyphenyl benzoyl urea derivatives was designed and synthesized for cytotoxic evaluation as potential antitumor agents. The synthetic compounds were evaluated for in vitro cytotoxicity against five human tumor cell lines, including A-549, SKOV-3, SK-MEL-2, XF-498 and HCT-15. Among others, compound 11 exhibited 50-100 times greater antitumor activities than the commercial product, Cisplatin.
View Article and Find Full Text PDF