Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic cells and macrophages).
View Article and Find Full Text PDFUnderstanding the stability of mRNA loaded lipid nanoparticles (mRNA-LNPs) is imperative for their clinical development. Herein, we propose the use of size-exclusion chromatography coupled with dual-angle light scattering (SEC-MALS) as a new approach to assessing mRNA-LNP stability in pure human serum and plasma. By applying a dual-column configuration to attenuate interference from plasma components, SEC-MALS was able to elucidate the degradation kinetics and physical property changes of mRNA-LNPs, which have not been observed accurately by conventional dynamic light scattering techniques.
View Article and Find Full Text PDFThe advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses.
View Article and Find Full Text PDFAcute myeloid leukemia carrying FMS-like tyrosine kinase receptor-3 (FLT3) mutations is a fatal blood cancer with a poor prognosis. Although the FLT3 inhibitor gilteritinib has recently been approved, it still suffers from limited efficacy and relatively high nonresponse rates. In this study, we report the potentiation of gilteritinib efficacy using nanocomplexation with a hyaluronic acid-epigallocatechin gallate conjugate.
View Article and Find Full Text PDFChemoresistance is one of the major challenges for the treatment of acute myeloid leukemia. Epigallocatechin gallate (EGCG), a bioactive polyphenol from green tea, has attracted immense interest as a potential chemosensitizer, but its application is limited due to the need for effective formulations capable of co-delivering EGCG and anti-leukemic drugs. Herein, we describe the formation and characterization of a micellar nanocomplex self-assembled from EGCG and daunorubicin, an anthracycline drug for the first-line treatment of acute myeloid leukemia.
View Article and Find Full Text PDFBackground: Currently available anti-leukemia drugs have shown limited success in the treatment of acute myeloid leukemia (AML) due to their poor access to bone marrow niche supporting leukemic cell proliferation.
Results: Herein, we report a bone marrow-targetable green tea catechin-based micellar nanocomplex for synergistic AML therapy. The nanocomplex was found to synergistically amplify the anti-leukemic potency of sorafenib via selective disruption of pro-survival mTOR signaling.
Background: Overproduction of reactive oxygen species (ROS) is known to delay wound healing by causing oxidative tissue damage and inflammation. The green tea catechin, (-)-Epigallocatechin-3-O-gallate (EGCG), has drawn a great deal of interest due to its strong ROS scavenging and anti-inflammatory activities. In this study, we developed EGCG-grafted silk fibroin hydrogels as a potential wound dressing material.
View Article and Find Full Text PDF(-)-Epigallocatechin-3--gallate (EGCG), the most bioactive catechin in green tea, has drawn significant interest as a potent antioxidant and anti-inflammatory compound. However, the application of EGCG has been limited by its rapid autoxidation at physiological pH, which generates cytotoxic levels of reactive oxygen species (ROS). Herein, we report the synthesis of poly(acrylic acid)-EGCG conjugates with tunable degrees of substitution and their spontaneous self-assembly into micellar nanoparticles with enhanced resistance against autoxidation.
View Article and Find Full Text PDFFibroblast-like synoviocytes are a key effector cell type involved in the pathogenesis of rheumatoid arthritis. The major green tea catechin, epigallocatechin-3--gallate (EGCG), has attracted significant interest for rheumatoid arthritis therapy because of its ability to suppress the proliferation and interleukin-6 secretion of synoviocytes. However, therapeutic efficacy of EGCG has been limited by a lack of target cell specificity.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive malignancy that leads to a poor prognosis even with intensive chemotherapy. As the key feature of AML is the blockade of hematopoietic cell maturation, considerable attention has been paid to 'differentiation therapy' aimed at transforming AML cells into more mature, benign phenotypes using pharmacological agents. Here we report a hyaluronic acid-(-)-epigallocatechin-3-O-gallate (HA-EGCG) conjugate as a unique anti-leukemic agent, capable of selectively killing AML cells as well as promoting their terminal differentiation into monocytes and granulocytes.
View Article and Find Full Text PDFAlthough a few nanomedicines have been approved for clinical use in cancer treatment, that recognizes improved patient safety through targeted delivery, their improved efficacy over conventional drugs has remained marginal. One of the typical drawbacks of nanocarriers for cancer therapy is a low drug-loading capacity that leads to insufficient efficacy and requires an increase in dosage and/or frequency of administration, which in turn increases carrier toxicity. In contrast, elevating drug-loading would cause the risk of nanocarrier instability, resulting in low efficacy and off-target toxicity.
View Article and Find Full Text PDFEnzymatic crosslinking chemistry using horseradish peroxidase (HRP) has been widely utilized as an effective approach to fabricating injectable hydrogels with high efficiency under mild reaction conditions. However, their clinical applications are limited by the immunogenicity of the plant-derived enzyme. Herein we report the design, synthesis and characterization of HRP-immobilized porous silica particles (HRP-particles) and their use for in situ formation of HRP-free hydrogels.
View Article and Find Full Text PDFThe green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG), has gained significant attention as a potent adjuvant to enhance the antitumor efficacy of cisplatin while mitigating its harmful side effects. Herein we report the development of a fail-safe cisplatin nanomedicine constructed with hyaluronic acid-EGCG conjugate for ovarian cancer therapy. A simple mixing of this conjugate and cisplatin induces spontaneous self-assembly of micellar nanocomplexes having a spherical core-shell structure.
View Article and Find Full Text PDFHyaluronic acid (HA)-based biomaterials have demonstrated only limited in vivo stability as a result of rapid degradation by hyaluronidase and reactive oxidative species. The green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG), has received considerable attention because of its powerful antioxidant and enzyme-inhibitory activities. We describe here the synthesis of HA-EGCG conjugate using a thiol-mediated reaction and its use for the preparation of a long-lasting injectable hydrogel.
View Article and Find Full Text PDFHydrogels have evolved into indispensable biomaterials in the fields of drug delivery and regenerative medicine. This minireview aims to highlight the recent advances in the hydrogel design for controlled release of bioactive proteins. The latest developments of enzyme-responsive and externally regulated drug delivery systems are summarized.
View Article and Find Full Text PDFNanosized polyelectrolyte complexes are attractive delivery vehicles for the transfer of therapeutic genes to diseased cells. Here we report the application of self-assembled ternary complexes constructed with plasmid DNA, branched polyethylenimine and hyaluronic acid-green tea catechin conjugates for targeted gene delivery. These conjugates not only stabilize plasmid DNA/polyethylenimine complexes via the strong DNA-binding affinity of green tea catechin, but also facilitate their transport into CD44-overexpressing cells via receptor-mediated endocytosis.
View Article and Find Full Text PDFHydrogels are widely used as reservoirs in drug delivery and scaffolds for tissue engineering. In particular, injectable hydrogel systems, which are formed by physical, chemical, or enzyme-mediated crosslinking reactions in situ, offer the advantages of minimal invasiveness, ease of application, and void-filling property. Examples of these hydrogels are provided in the first part of this paper.
View Article and Find Full Text PDFUnlabelled: Immunotherapy including interferon-alpha (IFN-α) is one of the treatment options for metastatic renal cell carcinoma (mRCC) patients. Despite clinical benefits for the selected patients, IFN-α therapy has some problems, such as poor tolerability and dose-limiting adverse effects. In addition, the frequent injections reduce a patient's quality of life and compliance.
View Article and Find Full Text PDFUnlabelled: The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2).
View Article and Find Full Text PDFHydrogels have gained significant attention as ideal delivery vehicles for protein drugs. However, the use of hydrogels for protein delivery has been restricted because their porous structures inevitably cause a premature leakage of encapsulated proteins. Here, we report a simple yet effective approach to regulate the protein release kinetics of hydrogels through the creation of microstructures, which serve as a reservoir, releasing their payloads in a controlled manner.
View Article and Find Full Text PDFWater-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs).
View Article and Find Full Text PDFThis study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low-density lipoproteins, for the tumor-targeted co-delivery of anti-cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.
View Article and Find Full Text PDFOver the past decades, injectable hydrogels have emerged as promising biomaterials because of their biocompatibility, excellent permeability, minimal invasion, and easy integration into surgical procedures. These systems provide an effective and convenient way to administer a wide variety of bioactive agents such as proteins, genes, and even living cells. Additionally, they can be designed to be degradable and eventually cleared from the body after completing their missions.
View Article and Find Full Text PDFHere, we report quantum dot-incorporating solid lipid nanoparticles (SLNs) for anticancer theranostics with synergistic therapeutic effects of paclitaxel-siRNA combination. The natural components of a low-density lipoprotein (LDL) are reconstituted to produce LDL-mimetic SLNs having a stable core/shell nanostructure incorporating quantum dots and paclitaxel within the lipid shell while anionic siRNA molecules are electrostatically complexed with the outer surface of SLNs. The produced SLN/siRNA complexes efficiently deliver both of paclitaxel and Bcl-2 targeted siRNA into human lung carcinoma cells and exhibit synergistic anticancer activities by triggering caspase-mediated apoptosis as determined by median effect plot analysis.
View Article and Find Full Text PDF