Publications by authors named "Khushmita D Gharat"

Background: The coronavirus disease 2019 (COVID-19) pandemic has brought about radical changes in our habits and lifestyles. The suspension of schools has led children to spend long hours at home, with reduced socialization, and changes in dietary patterns, oral hygiene practices and sleep routines. During a pandemic, appropriate oral health management and disease prevention are very important for the child's oral and general health.

View Article and Find Full Text PDF

In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160-950 nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases.

View Article and Find Full Text PDF

This letter describes the synthesis and biological evaluation of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as novel mPGES-1 inhibitors, capable of inhibiting an increased PGE production in the disease state. Structure-activity optimization afforded many potent mPGES-1 inhibitors having <50 nM potencies in the A549 cellular assay and adequate metabolic stability in liver microsomes. Lead compounds 8l and 8m demonstrated reasonable in vitro pharmacology and pharmacokinetic properties over other compounds.

View Article and Find Full Text PDF

A series of substituted tricyclic 4,4-dimethyl-3,4-dihydrochromeno[3,4-d]imidazole derivatives have been synthesized and their mPGES-1 biological activity has been disclosed in detail. Structure-activity relationship (SAR) optimization provided inhibitors with excellent mPGES-1 potency and low to moderate PGE release A549 cell potency. Among the mPGES-1 inhibitors studied, 7, 9 and 11l provided excellent selectivity over COX-2 (>200-fold) and >70-fold selectivity for COX-1 except 11l, which exhibited dual mPGES-1/COX-1 activity.

View Article and Find Full Text PDF

The discovery and SAR of potent, selective dioxane-fused tricyclic benz[d]imidazole derivatives as mPGES-1 inhibitor are herein described. Various amide modifications in this series afforded many potent mPGES-1 inhibitors, of which 17d proved to be suitable for further profiling in vivo. Compound 17d {2-((2-chloro-6-fluorophenyl)amino)-N-(3-fluoro-5-(trifluoromethyl)phenyl)-1-methyl-7,8-dihydro-1H-[1,4]dioxino[2',3':3,4]benzo[1,2-d]imidazole-5-carboxamide} exhibited excellent mPGES-1 enzyme (IC: 8nM), cell (A549 IC: 16.

View Article and Find Full Text PDF

mPGES-1 is inducible terminal synthase acting downstream of COX enzymes in arachidonic acid pathway, regulates the biosynthesis of pro-inflammatory prostaglandin PGE2. Cardiovascular side effect of coxibs and NSAIDs, selective for COX-2 inhibition, stimulated interest in mPGES-1, a therapeutic target with potential to deliver safe and effective anti-inflammatory drugs. The synthesis and structure activity relationship of a series of compounds from 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds as mPGES-1 inhibitor are discussed.

View Article and Find Full Text PDF

The design, synthesis and structure activity relationship studies of a series of compounds from benzo[d]imidazo[5,1-b]thiazole scaffold as phosphodiesterase 10A (PDE10A) inhibitors are discussed. Several potent analogs with heteroaromatic substitutions (9a-d) were identified. The anticipated binding mode of these analogs was confirmed by performing the in silico docking experiments.

View Article and Find Full Text PDF

A series of novel dibenzo[b,d]furan mono-carboxylic acid derivatives were synthesized, characterized and evaluated for their ability to inhibit Protein Tyrosine Phosphatase 1B (PTP1B) in vitro in order to use them as potential anti-diabetic agents. Structure-activity relationship study led to the identification of potent compound 5 E which inhibited PTP1B with IC(50) value of 82+/-0.43 nM.

View Article and Find Full Text PDF