Publications by authors named "Khushboo Kapadia"

Huntington's disease is a progressive and lethal neurodegenerative disease caused by an increased CAG repeat mutation in exon 1 of the huntingtin gene (mutant huntingtin). Current drug treatments provide only limited symptomatic relief without impacting disease progression. Previous studies in our lab and others identified the abnormal binding of mutant huntingtin protein with calmodulin, a key regulator of calcium signaling.

View Article and Find Full Text PDF

The aberrant protein-protein interaction between calmodulin and mutant huntingtin protein in Huntington's disease patients has been found to contribute to Huntington's disease progression. A high-throughput screen for small molecules capable of disrupting this interaction revealed a sultam series as potent small-molecule disruptors. Diversification of the sultam scaffold afforded a set of 24 analogs or further evaluation.

View Article and Find Full Text PDF

Regulation of dendritic spines is an important component of synaptic function and plasticity whereas dendritic spine dysregulation is related to several psychiatric and neurological diseases. In the present study, we tested the hypothesis that serotonin (5-HT)2A/2C receptor-induced Rho family transamidation and activation regulates dendritic spine morphology and that activation of multiple types of receptors can induce transglutaminase (TGase)-catalyzed transamidation of small G proteins. We previously reported a novel 5-HT2A receptor downstream effector, TGase-catalyzed serotonylation of the small G protein Rac1 in A1A1v cells, a rat embryonic cortical cell line.

View Article and Find Full Text PDF