Publications by authors named "Khursheed B Ansari"

Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).

View Article and Find Full Text PDF

Field emission finds a vital space in numerous scientific and technological applications, including high-resolution imaging at micro- and nano-scales, conducting high-energy physics experiments, molecule ionization in spectroscopy, and electronic uses. A continuous effort exists to develop new materials for enhanced field emission applications. In the present work, two-dimensional (2D) well-aligned CdSSe flake flowers (CdSSe-FFs) were successfully grown on gold-coated silicon substrate utilizing a simple and affordable chemical bath deposition approach at ambient temperature.

View Article and Find Full Text PDF

In this work, convective-dispersive and pore volume and surface diffusion models have been used to analyze Pb(II) adsorption from an aqueous solution over a nanostructured γ-alumina adsorbent in a packed bed adsorber. The models encompassing partial differential equation and a linear algebraic equation coupled with isotherm have been simulated in gPROMS using the backward finite difference approach. The predicted breakthrough curves of Pb(II) adsorption concerning flow rate, initial metal concentration, and bed height were matched with the experimental data.

View Article and Find Full Text PDF

The excessive strength of phenol present in industrial wastewater is a major issue of concern to be looked upon. Among the pollutant removal techniques, a novel robust device, the rotating packed bed (RPB) adsorber, offers efficient adsorption of phenol due to its ability to magnify the mass transfer rate. In the present study, support vector regression (SVR) has been applied to predict adsorption of phenol on activated carbon in RPB by taking into account the independent parameters, namely, spray density, gravity factor, concentration, and contact time.

View Article and Find Full Text PDF

Adsorptive separation of heavy metals from wastewater is a viable approach to reuse it and avoid environmental pollution. The productive employment of adsorptive separation at a commercial scale, however, relies on the optimized conditions of an adsorber bed holding maximum and selective isolation of the heavy metals. The experimental route includes a significant trial and error approach, is time-consuming, involves operating cost, and remains economically unattractive.

View Article and Find Full Text PDF