Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.
View Article and Find Full Text PDFThis study systematically investigated the effect of equal channel angular pressing (ECAP) on the microstructure, mechanical, corrosion, nano-tribological properties and biocompatibility of a newly developed β Ti-28Nb-35.4Zr (hereafter denoted TNZ) alloy. Results indicated that ECAP of the β TNZ alloy refined its microstructure by forming ultrafine grains without causing stress-induced phase transformation, leading to formation of a single β phase.
View Article and Find Full Text PDFBiodegradable metals (BMs) gradually degrade by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs.
View Article and Find Full Text PDFMagnesium (Mg) and its alloys are considered promising biodegradable implant materials because of their strength and natural degradation in the human body. However, the high corrosion rate of pure Mg in the physiological environment leads to rapid degradation before adequate bone healing. This mismatch between bone healing and the degradation of Mg implants supports the development of new Mg alloys with the addition of other suitable alloying elements in order to achieve simultaneously high corrosion resistance and desirable mechanical properties.
View Article and Find Full Text PDFAnxiety disorders are common among children and adolescents; almost one-third of this population has an anxiety disorder. The most common anxiety disorders in this population are specific phobia (19.3%), social anxiety disorder/ social phobia (9.
View Article and Find Full Text PDFMagnesium (Mg) and some of its alloys have attracted extensive interests for biomedical applications as they exhibit biodegradability and low elastic modulus that is closer to natural bones than the currently used metallic implant materials such as titanium (Ti) and its alloys, stainless steels, and cobalt-chromium (Co-Cr) alloys. However, the rapid degradation of Mg alloys and loss of their mechanical integrity before sufficient bone healing impede their clinical application. Our literature review shows that magnesium matrix nanocomposites (MMNCs) reinforced with nanoparticles possess enhanced strength, high corrosion resistance, and good biocompatibility.
View Article and Find Full Text PDFCurrent challenges in existing metallic biomaterials encourage undertaking research in the development of novel materials for biomedical applications. This paper critically reviews the potential of carbon nanotubes (CNT) and graphene as nanoreinforcements in metallic biomaterials for bone tissue engineering. Unique and remarkable mechanical, electrical, and biological properties of these carbon nanomaterials allow their use as secondary-phase reinforcements in monolithic biomaterials.
View Article and Find Full Text PDFTitanium (Ti) based tissue engineering scaffolds can be used to repair damaged bone. However, successful orthopedic applications of these scaffolds rely on their ability to mimic the mechanical properties of trabecular bone. Selective laser melting (SLM) was used to manufacture scaffolds of a new β-Ti35Zr28Nb alloy for biomedical applications.
View Article and Find Full Text PDFThe exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60%, 80% and 100%).
View Article and Find Full Text PDFAlloys comprised of the highly biocompatible elements titanium, niobium and zirconium have been a major focus in recent years in the field of metallic biomaterials. To contribute to the corpus of data in this field, the current paper presents results from a thorough microstructural and mechanical investigation of Ti-32Nb-6Zr subjected to a variety of ageing treatments. The presented alloy was stabilized to the higher temperature, body-centred cubic phase, showing only minimal precipitation on prolonged ageing, despite the presence of nanoscaled spinodal segregation arising from the Nb-Zr interaction.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2018
The effects of thermomechanical treatment on the microstructure and mechanical properties of a newly developed β titanium alloy, i.e., Ti-28Nb-35.
View Article and Find Full Text PDFUnlabelled: While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally.
View Article and Find Full Text PDFThe strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications. To simultaneously meet the requirements of biocompatibility, low elastic modulus and appropriate strength for orthopedic implant materials, it is highly desirable to develop new biocompatible titanium based materials with enhanced strength. In this study, we developed a niobium pentoxide (NbO) reinforced titanium composite via powder metallurgy for biomedical applications.
View Article and Find Full Text PDF