The constantly evolving human-machine interaction and advancement in sociotechnical systems have made it essential to analyze vital human factors such as mental workload, vigilance, fatigue, and stress by monitoring brain states for optimum performance and human safety. Similarly, brain signals have become paramount for rehabilitation and assistive purposes in fields such as brain-computer interface (BCI) and closed-loop neuromodulation for neurological disorders and motor disabilities. The complexity, non-stationary nature, and low signal-to-noise ratio of brain signals pose significant challenges for researchers to design robust and reliable BCI systems to accurately detect meaningful changes in brain states outside the laboratory environment.
View Article and Find Full Text PDFThe brain-computer interface (BCI) provides an alternate means of communication between the brain and external devices by recognizing the brain activities and translating them into external commands. The functional Near-Infrared Spectroscopy (fNIRS) is becoming popular as a non-invasive modality for brain activity detection. The recent trends show that deep learning has significantly enhanced the performance of the BCI systems.
View Article and Find Full Text PDFMental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy.
View Article and Find Full Text PDFCognitive workload is one of the widely invoked human factors in the areas of human-machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and evaluate the cognitive states of the brain. In this study, we have decoded four classes of MWL using long short-term memory (LSTM) with 89.
View Article and Find Full Text PDF