Publications by authors named "Khristopher Kabbabe"

Point-source methane emission flux quantification is required to help constrain the global methane budget. Facility-scale fluxes can be derived using in situ methane mole fraction sampling, near-to-source, which may be acquired from an unmanned aerial vehicle (UAV) platform. We test a new non-dispersive infrared methane sensor by mounting it onto a small UAV, which flew downwind of a controlled methane release.

View Article and Find Full Text PDF

This paper describes the development of a new sampling and measurement method to infer methane flux using proxy measurements of CO concentration and wind data recorded by Unmanned Aerial Systems (UAS). The flux method described and trialed here is appropriate to the spatial scale of landfill sites and analogous greenhouse gas emission hotspots, making it an important new method for low-cost and rapid case study quantification of fluxes from currently uncertain (but highly important) greenhouse gas sources. We present a case study using these UAS-based measurements to derive instantaneous methane fluxes from a test landfill site in the north of England using a mass balance model tailored for UAS sampling and co-emitted CO concentration as a methane-emission proxy.

View Article and Find Full Text PDF