Publications by authors named "Khrapko K"

Somatic mitochondrial DNA (mtDNA) mutations are prevalent in tumors, yet defining their biological significance remains challenging due to the intricate interplay between selective pressure, heteroplasmy, and cell state. Utilizing bulk whole-genome sequencing data from matched tumor and normal samples from two cohorts of pediatric cancer patients, we uncover differences in the accumulation of synonymous and nonsynonymous mtDNA mutations in pediatric leukemias, indicating distinct selective pressures. By integrating single-cell sequencing (SCS) with mathematical modeling and network-based systems biology approaches, we identify a correlation between the extent of cell-state changes associated with tumor-enriched mtDNA mutations and the selective pressures shaping their distribution among individual leukemic cells.

View Article and Find Full Text PDF

The resilience of the mitochondrial genome (mtDNA) to a high mutational pressure depends, in part, on negative purifying selection in the germline. A paradigm in the field has been that such selection, at least in part, takes place in primordial germ cells (PGCs). Specifically, Floros et al.

View Article and Find Full Text PDF

Levenshtein distance is a commonly used edit distance metric, typically applied in language processing, and to a lesser extent, in molecular biology analysis. Biological nucleic acid sequences are often embedded in longer sequences and are subject to insertion and deletion errors that introduce frameshift during sequencing. These frameshift errors are due to string context and should not be counted as true biological errors.

View Article and Find Full Text PDF

Background: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions.

View Article and Find Full Text PDF

A large-scale study of mutations in mitochondrial DNA has revealed a subset that do not accumulate with age.

View Article and Find Full Text PDF
Article Synopsis
  • The mutational patterns of mitochondrial DNA (mtDNA) are distinct from those of nuclear DNA, and variations across different species remain poorly understood.
  • The study examines mtDNA mutations in relation to species age and generation length, discovering that species with longer generation times have a higher frequency of specific mutations (AH > GH).
  • Researchers suggest that these mutations reflect oxidative damage linked to aging and the duration of mtDNA being single-stranded during replication.
View Article and Find Full Text PDF

The A-to-G point mutation at position 3243 in the human mitochondrial genome (m.3243A > G) is the most common pathogenic mtDNA variant responsible for disease in humans. It is widely accepted that m.

View Article and Find Full Text PDF

The hypothesis that the evolution of humans involves hybridization between diverged species has been actively debated in recent years. We present the following novel evidence in support of this hypothesis: the analysis of nuclear pseudogenes of mtDNA ("NUMTs"). NUMTs are considered "mtDNA fossils" as they preserve sequences of ancient mtDNA and thus carry unique information about ancestral populations.

View Article and Find Full Text PDF

Background: Third-generation sequencing offers some advantages over next-generation sequencing predecessors, but with the caveat of harboring a much higher error rate. Clustering-related sequences is an essential task in modern biology. To accurately cluster sequences rich in errors, error type and frequency need to be accounted for.

View Article and Find Full Text PDF

Nucleic acid sequence analyses are fundamental to all aspects of biological research, spanning aging, mitochondrial DNA (mtDNA) and cancer, as well as microbial and viral evolution. Over the past several years, significant improvements in DNA sequencing, including consensus sequence analysis, have proven invaluable for high-throughput studies. However, all current DNA sequencing platforms have limited utility for studies of complex mixtures or of individual long molecules, the latter of which is crucial to understanding evolution and consequences of single nucleotide variants and their combinations.

View Article and Find Full Text PDF

Mitochondria are well-characterized regarding their function in both energy production and regulation of cell death; however, the heterogeneity that exists within mitochondrial populations is poorly understood. Typically analyzed as pooled samples comprised of millions of individual mitochondria, there is little information regarding potentially different functionality across subpopulations of mitochondria. Herein we present a new methodology to analyze mitochondria as individual components of a complex and heterogeneous network, using a nanoscale and multi-parametric flow cytometry-based platform.

View Article and Find Full Text PDF

Contrasting the equal contribution of nuclear genetic material from maternal and paternal sources to offspring, passage of mitochondria, and thus mitochondrial DNA (mtDNA), is uniparental through the egg. Since mitochondria in eggs are ancestral to all somatic mitochondria of the next generation and to all cells of future generations, oocytes must prepare for the high energetic demands of maturation, fertilization and embryogenesis while simultaneously ensuring that their mitochondrial genomes are inherited in an undamaged state. Although significant effort has been made to understand how the mtDNA bottleneck and purifying selection act coordinately to prevent silent and unchecked spreading of invisible mtDNA mutations through the female germ line across successive generations, it is unknown if and how somatic cells of the immediate next generation are spared from inheritance of detrimental mtDNA molecules.

View Article and Find Full Text PDF

The mtDNA 'mutator' mouse, also called the 'POLG' mouse, is a well-characterized model frequently used for studies of progeroid aging. Harboring a mutation in the proofreading domain of the mitochondrial polymerase, polymerase-γ (), POLG mice acquire mtDNA mutations at an accelerated rate. This results in premature mitochondrial dysfunction and a systemic aging phenotype.

View Article and Find Full Text PDF

The data and methods presented in this article are supplementing the research article "Integration of mtDNA pseudogenes into the nuclear genome coincides with speciation of the human genus. A hypothesis", DOI: 10.1016/j.

View Article and Find Full Text PDF

Fragments of mitochondrial DNA are known to get inserted into nuclear DNA to form NUMTs, i.e. nuclear pseudogenes of the mtDNA.

View Article and Find Full Text PDF

The mtDNA mutator mouse lacks the proofreading capacity of the sole mtDNA polymerase, leading to accumulation of somatic mtDNA mutations, and a profound premature aging phenotype including elevated oxidative stress and apoptosis, and reduced mitochondrial function. We have previously reported that endurance exercise alleviates the aging phenotype in the mutator mice, reduces oxidative stress, and enhances mitochondrial biogenesis. Here we summarize our findings, with the emphasis on the central role of p53 in these adaptations.

View Article and Find Full Text PDF

Background: Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear.

View Article and Find Full Text PDF

Quantification of deletions in mtDNA is a long-standing problem in mutational analysis. We describe here an approach that combines the power of single-molecule PCR of the entire mitochondrial genome with the enrichment of the deletions by restriction digestion. This approach is indispensable if information about wide range of deletion types in a sample is critical, such as in studies concerning distribution of deletion breakpoints (as opposed to approaches where fraction of a single deletion or a limited set of deletions is used as a proxy for total deletion load).

View Article and Find Full Text PDF

In this issue, Baris et al. (2015) describe cardiac rhythm abnormalities in a mouse model of mitochondrial dysfunction in widely distributed cells of the aging human heart. How do a few metabolically challenged cells disrupt cardiac rhythm? We suggest that these cells provide "crystallization centers" for latent dysfunctional zones to allow arrhythmia emergence.

View Article and Find Full Text PDF

Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood.

View Article and Find Full Text PDF

The relationship of mitochondrial DNA mutations to aging is still debated. Most mtDNA mutations are recessive: there are multiple copies per cell and mutation needs to clonally expand to cause respiratory deficiency. Overall mtDNA mutant loads are low, so effects of mutations are limited to critical areas where mutations locally reach high fractions.

View Article and Find Full Text PDF