Publications by authors named "Khonina S"

Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.

View Article and Find Full Text PDF

In traditional neural network designs, a multilayer perceptron (MLP) is typically employed as a classification block following the feature extraction stage. However, the Kolmogorov-Arnold Network (KAN) presents a promising alternative to MLP, offering the potential to enhance prediction accuracy. In this paper, we studied KAN-based networks for pixel-wise classification of hyperspectral images.

View Article and Find Full Text PDF
Article Synopsis
  • Lithography is essential in microfabrication and nanotechnology, allowing intricate pattern transfers onto surfaces like wafers.
  • Grayscale lithography (GSL) stands out for its ability to create customizable patterns with varying depths, unlike traditional binary lithography, enabling complex microstructures and optical elements.
  • GSL is vital in fields such as microelectronics and photonics, offering precise control over features and leading to advanced functionality in future manufacturing technologies.
View Article and Find Full Text PDF

Unlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.

View Article and Find Full Text PDF

Artificial intelligence (AI) is transforming diffractive optics development through its advanced capabilities in design optimization, pattern generation, fabrication enhancement, performance forecasting, and customization. Utilizing AI algorithms like machine learning, generative models, and transformers, researchers can analyze extensive datasets to refine the design of diffractive optical elements (DOEs) tailored to specific applications and performance requirements. AI-driven pattern generation methods enable the creation of intricate and efficient optical structures that manipulate light with exceptional precision.

View Article and Find Full Text PDF

Non-diffractive beams, also known as diffraction-free beams, are a class of optical beams that maintain their intensity profile over a long distance without spreading out due to diffraction [...

View Article and Find Full Text PDF

We present an approach for the realization of controlled spiral-shaped mass transfer in azopolymer thin films and the fabrication of spiral microreliefs. For such laser processing, we propose to use light fields with structured polarization distributions generated by a transmissive spatial light modulator. The projection lithography approach is utilized, transferring the pattern directly to the surface of azopolymer thin films.

View Article and Find Full Text PDF

Photonic neural networks (PNNs), utilizing light-based technologies, show immense potential in artificial intelligence (AI) and computing. Compared to traditional electronic neural networks, they offer faster processing speeds, lower energy usage, and improved parallelism. Leveraging light's properties for information processing could revolutionize diverse applications, including complex calculations and advanced machine learning (ML).

View Article and Find Full Text PDF

Photosensitive materials are widely used for the direct fabrication of surface relief gratings (SRGs) without the selective etching of the material. It is known that the interferometric approach makes it possible to fabricate SRGs with submicron and even subwavelength periods. However, to change the period of the written SRGs, it is necessary to change the convergence angle, shift a sample, and readjust the interferometric setup.

View Article and Find Full Text PDF

Light beams bearing orbital angular momentum (OAM) are used in various scientific and engineering applications, such as microscopy, laser material processing, and optical tweezers. Precise topological charge control is crucial for efficiently using vortex beams in different fields, such as information encoding in optical communications and sensor systems. This work presents a novel method for optimizing an emitting micro-ring resonator (MRR) for emitting vortex beams with variable orders of OAM.

View Article and Find Full Text PDF

In this study, we have undertaken a comprehensive numerical investigation of a refractive index sensor designed around a metal-insulator-metal (MIM) plasmonic waveguide. Our approach utilizes the finite element method to thoroughly analyze the sensor's performance. The sensor's configuration utilizes a ring resonator design, which has been slightly modified at the coupling segment.

View Article and Find Full Text PDF

According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact lenses (SCLs). Although contact lenses were first developed for eyesight correction, new uses have recently become available.

View Article and Find Full Text PDF

We study structural and morphological transformations caused by multipulse femtosecond-laser exposure of Bridgman-grown ϵ-phase GaSe crystals, a van der Waals semiconductor promising for nonlinear optics and optoelectronics. We unveil, for the first time, the laser-driven self-organization regimes in GaSe allowing the formation of regular laser-induced periodic surface structures (LIPSSs) that originate from interference of the incident radiation and interface surface plasmon waves. LIPSSs formation causes transformation of the near-surface layer to amorphous GaSe at negligible oxidation levels, evidenced from comprehensive structural characterization.

View Article and Find Full Text PDF

Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing.

View Article and Find Full Text PDF

Optical switching is an essential part of photonic integrated circuits and the focus of research at the moment. In this research, an optical switch design working on the phenomenon of guided-mode resonances in a 3D photonic-crystal-based structure is reported. The optical-switching mechanism is studied in a dielectric slab-waveguide-based structure operating in the near-infrared range in a telecom window of 1.

View Article and Find Full Text PDF

Optical ring resonators (RRs) are a novel sensing device that has recently been developed for several sensing applications. In this review, RR structures based on three widely explored platforms, namely silicon-on-insulator (SOI), polymers, and plasmonics, are reviewed. The adaptability of these platforms allows for compatibility with different fabrication processes and integration with other photonic components, providing flexibility in designing and implementing various photonic devices and systems.

View Article and Find Full Text PDF

To form a diffraction-free beam with a complex structure, we propose to use a set of primitives calculated iteratively for the ring spatial spectrum. We also optimized the complex transmission function of the diffractive optical elements (DOEs), which form some primitive diffraction-free distributions (for example, a square or/and a triangle). The superposition of such DOEs supplemented with deflecting phases (a multi-order optical element) provides to generate a diffraction-free beam with a more complex transverse intensity distribution corresponding to the composition of these primitives.

View Article and Find Full Text PDF

In contemporary science and technology, photonic sensors are essential. They may be made to be extremely resistant to some physical parameters while also being extremely sensitive to other physical variables. Most photonic sensors may be incorporated on chips and operate with CMOS technology, making them suitable for use as extremely sensitive, compact, and affordable sensors.

View Article and Find Full Text PDF

In this paper a perfect absorber with a photonic crystal cavity (PhC-cavity) is numerically investigated for carbon dioxide (CO) gas sensing application. Metallic structures in the form of silver are introduced for harnessing plasmonic effects to achieve perfect absorption. The sensor comprises a PhC-cavity, silver (Ag) stripes, and a host functional material-Polyhexamethylene biguanide polymer-deposited on the surface of the sensor.

View Article and Find Full Text PDF

Various diffractive, refractive and holographic optical elements, such as diffraction gratings; microlens raster; phase plates; multi-order diffractive optical elements; adaptive mirrors; diffractive and refractive axicons; holographic multiplexes and many others are used to analyze wavefront aberrations. We shortly discuss the features (advantages and disadvantages) of various wavefront aberration sensors in the Introduction. The main part of the paper is devoted to the analysis of the weight coefficients of Zernike polynomials obtained during medical examinations of the cornea in the human eye.

View Article and Find Full Text PDF

Coherent terahertz beams with radial polarization of the 1st, 2nd, and 3rd orders have been generated with the use of silicon subwavelength diffractive optical elements (DOEs). Silicon elements were fabricated by a technology similar to the technology used before for the fabrication of DOEs forming laser terahertz beams with pre-given mode content. The beam of the terahertz Novosibirsk Free Electron Laser was used as the illuminating beam.

View Article and Find Full Text PDF

Recently, the realization of the spiral mass transfer of matter has attracted the attention of many researchers. Nano- and microstructures fabricated with such mass transfer can be used for the generation of light with non-zero orbital angular momentum (OAM) or the sensing of chiral molecules. In the case of metals and semiconductors, the chirality of formed spiral-shaped microstructures depends on the topological charge (TC) of the illuminating optical vortex (OV) beam.

View Article and Find Full Text PDF

The polarization sensitivity of azopolymers is well known. Therefore, these materials are actively used in many applications of photonics. Recently, the unique possibilities of processing such materials using a structured laser beam were demonstrated, which revealed the key role of the distribution of polarization and the longitudinal component of light in determining the shape of the nano- and microstructures formed on the surfaces of thin azopolymer films.

View Article and Find Full Text PDF

One of the fastest-expanding study areas in optics over the past decade has been metasurfaces (MSs). These subwavelength meta-atom-based ultrathin arrays have been developed for a broad range of functions, including lenses, polarization control, holography, coloring, spectroscopy, sensors, and many more. They allow exact control of the many properties of electromagnetic waves.

View Article and Find Full Text PDF