Publications by authors named "Kholodenko I"

Screening of cell surface markers of three glioma cell lines (astrocytoma 1321N1, glioblastoma T98g, and glioblastoma astrocytoma U373 MG) was performed. Glioma cells expressed common mesenchymal cell markers, although the expression levels varied between the cell lines. The expression of proneural markers and glioma cancer stem cell markers was very low and also varied.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis.

View Article and Find Full Text PDF

Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology.

View Article and Find Full Text PDF

Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments.

View Article and Find Full Text PDF

Glioblastoma is a tumor characterized by pronounced hypoxia. Hypoxia produces diverse effects on tumor cells, and the results of experimental studies available so far are contradictory. In vitro hypoxia can be modeled in two ways: by reducing the level of atmospheric oxygen (physically induced hypoxia) or by using hypoxia-inducing chemicals such as cobalt chloride (II) (CoCl) (chemically induced hypoxia).

View Article and Find Full Text PDF

Ganglioside GD2 is a well-established target expressed on multiple solid tumors, many of which are characterized by low treatment efficiency. Antibody-drug conjugates (ADCs) have demonstrated marked success in a number of solid tumors, and GD2-directed drug conjugates may also hold strong therapeutic potential. In a recent study, we showed that ADCs based on the approved antibody dinutuximab and the drugs monomethyl auristatin E (MMAE) or F (MMAF) manifested potent and selective cytotoxicity in a panel of tumor cell lines and strongly inhibited solid tumor growth in GD2-positive mouse cancer models.

View Article and Find Full Text PDF

Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas.

View Article and Find Full Text PDF

Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated.

View Article and Find Full Text PDF

CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis.

View Article and Find Full Text PDF

Background: Both ganglioside GD2-targeted immunotherapy and antibody-drug conjugates (ADCs) have demonstrated clinical success as solid tumor therapies in recent years, yet no research has been carried out to develop anti-GD2 ADCs against solid tumors. This is the first study to analyze cytotoxic activity of clinically relevant anti-GD2 ADCs in a wide panel of cell lines with varying GD2 expression and their effects in mouse models of GD2-positive solid cancer.

Methods: Anti-GD2 ADCs were generated based on the GD2-specific antibody ch14.

View Article and Find Full Text PDF

Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved.

View Article and Find Full Text PDF

A correlation was found between chemoresistance of HT-29CD133 and HT-29CD133 sublines obtained after cell sorting and high expression of CD133. On the other hand, knockout of the PROM1 gene and, as a consequence, the absence of CD133 expression did not increase the sensitivity of tumor cells to chemotherapy, which indicates the absence of a direct effect of CD133 on the formation of chemoresistance in colorectal cancer cells. Variants of the HT-29 line with complete or partial knockout of the PROM1 gene were equally sensitive to protein kinase inhibitors sorafenib and sunitinib.

View Article and Find Full Text PDF

The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier predicting the GD2-positive tumor phenotypes.

View Article and Find Full Text PDF

Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results.

View Article and Find Full Text PDF

Induction of direct cell death is one of the mechanisms of the antitumor effect of GD2-specific antibodies used for the therapy of high-risk neuroblastoma. The mechanisms of the cytotoxic signal triggered by antibody binding to GD2 ganglioside on the surface of the tumor cell remain insufficiently studied. Using inhibitor analysis we demonstrated that actin microfilaments are involved in the cell death induced by GD2-specific antibodies.

View Article and Find Full Text PDF

Sequential courses of anticancer target therapy lead to selection of drug-resistant cells, which results in continuous decrease of clinical response. Here we present a new approach for predicting effective combinations of target drugs, which act in a synergistic manner. Synergistic combinations of drugs may prevent or postpone acquired resistance, thus increasing treatment efficiency.

View Article and Find Full Text PDF

Transplantation of solid organs, including liver, induces a number of serious complications related to immune incompatibility and requiring long-term use of immunosuppressive drugs. Finding the ways to inducing recipient immunological tolerance to the grafts is a top priority in organ transplantation and immunology. Along with the search for immunosupressive therapy, the development of alternative approaches to induction of immunological tolerance based on cell technologies is now in progress.

View Article and Find Full Text PDF

Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy.

View Article and Find Full Text PDF

Acquired resistance to chemotherapy and radiation therapy is one of the major obstacles decreasing efficiency of treatment of the oncologic diseases. In this study, on the two cell lines (ovarian carcinoma SKOV-3 and neuroblastoma NGP-127), we modeled acquired resistance to five target anticancer drugs. The cells were grown on gradually increasing concentrations of the clinically relevant tyrosine kinase inhibitors (TKIs) Sorafenib, Pazopanib and Sunitinib, and rapalogs Everolimus and Temsirolimus, for 20 weeks.

View Article and Find Full Text PDF

In vivo tracking of transplanted mesenchymal stem cells (MSCs) migration and homing is vital for understanding the mechanisms of beneficial effects of MSCs transplantation in animal models of diseases and in clinical trials. Transplanted cells can be labeled with superparamagnetic iron oxide (SPIO) particles and visualized in vivo using a number of iron sensitive MRI techniques. However, the applicability of those techniques for SPIO-labeled MSCs tracking in live brain has not been sufficiently investigated.

View Article and Find Full Text PDF

Stromal liver cells obtained from liver biopsy specimens of a patient with alcoholic cirrhosis can proliferate for a long time in culture passing more than 30 passages. In the course of culturing from early to late passages, acceleration of cell proliferation, decrease of the expression of some markers, and loss of hepatogenic differentiation potential were observed. On passage 30, induced pluripotent stem cells were obtained from these cells and comparative analysis of adipogenic and hepatic differentiation potencies of these cells and original liver stromal cells was performed.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects.

View Article and Find Full Text PDF

The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique.

View Article and Find Full Text PDF

The liver has a marked capacity for regeneration. In most cases the liver regeneration is determined by hepatocytes. The regenerative capacity of hepatocytes is significantly reduced in acute or chronic damage.

View Article and Find Full Text PDF