The use of CRISPR/Cas nucleases for the development of DNA diagnostic systems in out-of-laboratory conditions (point-of-need testing, PONT) has demonstrated rapid growth in the last few years, starting with the appearance in 2017-2018 of the first diagnostic platforms known as DETECTR and SHERLOCK. The platforms are based on a combination of methods of nucleic acid isothermal amplification with selective CRISPR/Cas detection of target amplicons. This significantly improves the sensitivity and specificity of PONT, making them comparable with or even superior to the sensitivity and specificity of polymerase chain reaction, considered as the "gold standard" of DNA diagnostics.
View Article and Find Full Text PDFThe approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture.
View Article and Find Full Text PDFThree novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.
View Article and Find Full Text PDFThe long-read RNA sequencing developed by Oxford Nanopore Technology provides a direct quantification of transcript isoforms. That makes the number of transcript isoforms per gene an intrinsically suitable metric for alternative splicing (AS) profiling in the application to this particular type of RNA sequencing. By using this simple metric and recruiting principal component analysis (PCA) as a tool to visualize the high-dimensional transcriptomic data, we were able to group biospecimens of normal human liver tissue and hepatocyte-derived malignant HepG2 and Huh7 cells into clear clusters in a 2D space.
View Article and Find Full Text PDFThe 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (E) of 0.
View Article and Find Full Text PDFUsing human chromosome 18 (Ch18) genes as an example, a PCR analysis of the interindividual variability of gene expression in liver tissue was performed. Although the quantitative profiles of the Ch18 transcriptome, expressed in the number of cDNA copies per single cell, showed a high degree of correlation between donors (Pearson correlation coefficients ranged from 0.963 to 0.
View Article and Find Full Text PDFThe chromosome-centric dataset was created by applying several technologies of transcriptome profiling. The described dataset is available at NCBI repository (BioProject ID PRJNA635536). The dataset referred to the same type of tissue, cell lines, transcriptome sequencing technologies, and was accomplished in a period of 8 years (the first data were obtained in 2013 while the last ones - in 2020).
View Article and Find Full Text PDFThe coordination of zinc ions by histidine residues of amyloid-beta peptide (Aβ) plays a critical role in the zinc-induced Aβ aggregation implicated in Alzheimer's disease (AD) pathogenesis. The histidine to arginine substitution at position 6 of the Aβ sequence (H6R, English mutation) leads to an early onset of AD. Herein, we studied the effects of zinc ions on the aggregation of the Aβ42 peptide and its isoform carrying the H6R mutation (H6R-Aβ42) by circular dichroism spectroscopy, dynamic light scattering, turbidimetric and sedimentation methods, and bis-ANS and thioflavin T fluorescence assays.
View Article and Find Full Text PDFUsing random (combinatorial) DNA-libraries with various degrees of diversity, it was shown that their amplification by polymerase chain reaction in real time resulted in appearance of a maximum on amplification curves. The relative decrease of fluorescence after passing the maximum was directly proportional to the logarithm of the number of oligonucleotide sequence variants in the random DNA-library provided that this number was within in the interval from 1 to 104 and remained practically unaltered when the number of variants was in the interval from 105 to 108. The obtained dependence was used in the course of SELEX to evaluate changes in the diversity of random DNA-libraries from round to round in selection of DNA-aptamers to the recombinant SMAD4 protein.
View Article and Find Full Text PDFZinc ions and glycosaminoglycans (GAGs) are found in amyloid deposits and are known to modulate the β-amyloid peptide (Aβ) aggregation, which is thought to be a key event in the pathogenesis of Alzheimer's disease (AD). Correlation spectroscopy was used to study how the H6R and D7H mutations of the metal-binding domain (MBD) of Aβ42 affect the modulation of its zinc-induced aggregation by the model GAG heparin. The H6R mutation was shown to decrease and the D7H mutation to increase the Aβ42 propensity to aggregate in the presence of zinc ions.
View Article and Find Full Text PDFZinc-induced aggregation of amyloid-β peptides (Aβ) is considered to contribute to the pathogenesis of Alzheimer's disease. While glycosaminoglycans (GAGs) that are commonly present in interneuronal space are known to enhance Aβ self-aggregation in vitro, the impact of GAGs on the formation of zinc-induced amorphous Aβ aggregates has not yet been thoroughly studied. Here, employing dynamic light scattering, bis-ANS fluorimetry, and sedimentation assays, we demonstrate that heparin serving as a representative GAG modulates the kinetics of zinc-induced Aβ42 aggregation in vitro by slowing the rate of aggregate formation and aggregate size growth.
View Article and Find Full Text PDFZinc ions form complexes with β-amyloid peptides and play an important role in Alzheimer's disease pathogenesis. It has been demonstrated by turbidimetry and correlation spectroscopy that synthetic peptide Aβ16 representing the metal-binding domain of β-amyloid is able to interact with nucleic acids, chondroitin polysulfate, and dextran sulfates in the presence of zinc ions. The amino acid D7H substitution enhanced the peptide binding to polyanions, whereas the H6R and H6A-H13A substitutions abolished this interaction.
View Article and Find Full Text PDFAmyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA interactions and nuclear localization of iAβ, the interference of iAβ with the normal DNA expression has recently been proposed as a plausible pathway by which Aβ can exert neurotoxicity.
View Article and Find Full Text PDFAptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins.
View Article and Find Full Text PDFInteraction of intranuclear β-amyloid with DNA is considered to be a plausible mechanism of Alzheimer's disease pathogenesis. The interaction of single- and double-stranded DNA with synthetic peptides was analyzed using surface plasmon resonance. The peptides represent the metal-binding domain of β-amyloid (amino acids 1-16) and its variants with chemical modifications and point substitutions of amino acid residues which are associated with enhanced neurotoxicity of β-amyloid in cell tests.
View Article and Find Full Text PDFAlzheimer's disease is the most prevalent neurodegenerative pathology. According to the amyloid cascade hypothesis, a key event of the Alzheimer's disease pathogenesis is a transition of the β-amyloid peptide (Аβ) from the monomeric form to the aggregated state. The mechanism of Аβ aggregation is intensively studied in vitro, by means of synthetic peptides and various physico-chemical methods allowing evaluation of size, molecular structure, and morphology of the formed aggregates.
View Article and Find Full Text PDFThe interaction of the 16-mer synthetic peptide (Aβ16), which represents the metal-binding domain of the amyloid-β with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aβ16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-β. The interaction of Aβ16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.
View Article and Find Full Text PDFThe final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples.
View Article and Find Full Text PDF