Publications by authors named "Khmaies Ouahada"

Multipliers are essential components within digital signal processing, arithmetic operations, and various computational tasks, making their design and optimization crucial for improving the efficiency and performance of integrated circuits. Among multiplier architectures, Vedic multipliers stand out due to their inherent efficiency and speed, derived from ancient Indian mathematical principles. This study presents a comprehensive analysis and comparison of 4-bit Vedic multiplier designs utilizing Gate Diffusion Input (GDI), Complementary Metal-Oxide-Semiconductor (CMOS), and Transmission Gate (TG) technologies, utilizing different adder architectures such as Ripple Carry Adder (RCA), and Carry Lookahead Adder (CLA), Carry Skip Adder (CSA).

View Article and Find Full Text PDF

Antennas with higher gain and efficiency deliver superior performance across a wide frequency range. Achieving these characteristics at high frequencies while keeping a compact size necessitates sophisticated design approaches. This research presents a substrate-integrated waveguide (SIW) cavity-backed slotted patch antenna (SPA) tailored for the 28 GHz and 34 GHz frequency bands.

View Article and Find Full Text PDF

In developing countries, smart grids are nonexistent, and electricity theft significantly hampers power supply. This research introduces a lightweight deep-learning model using monthly customer readings as input data. By employing careful direct and indirect feature engineering techniques, including Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), UMAP (Uniform Manifold Approximation and Projection), and resampling methods such as Random-Under-Sampler (RUS), Synthetic Minority Over-sampling Technique (SMOTE), and Random-Over-Sampler (ROS), an effective solution is proposed.

View Article and Find Full Text PDF

Gait recognition has become an increasingly promising area of research in the search for noninvasive and effective methods of person identification. Its potential applications in security systems and medical diagnosis make it an exciting field with wide-ranging implications. However, precisely recognizing and assessing gait patterns is difficult, particularly in changing situations or from multiple perspectives.

View Article and Find Full Text PDF

Direct AC-AC converters are strong candidates in the power converting system to regulate grid voltage against the perturbation in the line voltage and to acquire frequency regulation at discrete step levels in variable speed drivers for industrial systems. All such applications require the inverted and non-inverted form of the input voltage across the output with voltage-regulating capabilities. The required value of the output frequency is gained with the proper arrangement of the number of positive and negative pulses of the input voltage across the output terminals.

View Article and Find Full Text PDF

This article proposes a dual mode dual-polarized antenna configuration for IRNSS and fifth generation (5G) applications, operating at a frequency of 3.5 GHz based on characteristic mode analysis (CMA), and aims to provide broadband dual-polarized functionality. The original design of the antenna is a traditional patch antenna, and its dual-polarized features are determined using characteristic mode analysis.

View Article and Find Full Text PDF

A random initialization of the search particles is a strong argument in favor of the deployment of nature-inspired metaheuristic algorithms when the knowledge of a good initial guess is lacked. This article analyses the impact of the type of randomization on the working of algorithms and the acquired solutions. In this study, five different types of randomizations are applied to the Accelerated Particle Swarm Optimization (APSO) and Squirrel Search Algorithm (SSA) during the initializations and proceedings of the search particles for selective harmonics elimination (SHE).

View Article and Find Full Text PDF

The energy generation efficiency of photovoltaic (PV) systems is compromised by partial shading conditions (PSCs) of solar irradiance with many maximum power points (MPPs) while tracking output power. Addressing this challenge in the PV system, this article proposes an adapted hybrid control algorithm that tracks the global maximum power point (GMPP) by preventing it from settling at different local maximum power points (LMPPs). The proposed scheme involves the deployment of a 3 × 3 multi-string PV array with a single modified boost converter model and an adapted perturb and observe-based model predictive control (APO-MPC) algorithm.

View Article and Find Full Text PDF

In the past few years, privacy concerns have grown, making the financial models of businesses more vulnerable to attack. In many cases, it is hard to emphasize the importance of monitoring things in real-time with data from Internet of Things (IoT) devices. The people who make the IoT devices and those who use them face big problems when they try to use Artificial Intelligence (AI) techniques in real-world applications, where data must be collected and processed at a central location.

View Article and Find Full Text PDF

Soil, a significant natural resource, plays a crucial role in supporting various ecosystems and serves as the foundation of Pakistan's economy due to its primary use in agriculture. Hence, timely monitoring of soil type and salinity is essential. However, traditional methods for identifying soil types and detecting salinity are time-consuming, requiring expert intervention and extensive laboratory experiments.

View Article and Find Full Text PDF

In Millimeter-Wave (mm-Wave) massive Multiple-Input Multiple-Output (MIMO) systems, hybrid precoders/combiners must be designed to improve antenna gain and reduce hardware complexity. Sparse Bayesian learning via Expectation Maximization (SBL-EM) algorithm is not practically feasible for high signal dimensions because estimating sparse signals and designing optimal hybrid precoders/combiners using SBL-EM still provide high computational complexity for higher signal dimensions. To overcome the issues of high computational complexity along with making it suitable for larger data sets, in this paper, we propose Learned-Sparse Bayesian Learning with Generalized Approximate Message Passing algorithm (L-SBL-GAMP) algorithm for designing optimal hybrid precoders/combiners suitable for mmWave Massive MIMO systems.

View Article and Find Full Text PDF

This study introduces a monopole 4 × 4 Ultra-Wide-Band (UWB) Multiple-Input Multiple-Output (MIMO) antenna system with a novel structure and outstanding performance. The proposed design has triple-notched characteristics due to CSRR etching and a C-shaped curve. The notching occurs in 4.

View Article and Find Full Text PDF

The Internet of Things (IoT) is a well-known technology that has a significant impact on many areas, including connections, work, healthcare, and the economy. IoT has the potential to improve life in a variety of contexts, from smart cities to classrooms, by automating tasks, increasing output, and decreasing anxiety. Cyberattacks and threats, on the other hand, have a significant impact on intelligent IoT applications.

View Article and Find Full Text PDF

COVID-19 is a rapidly spreading pandemic, and early detection is important to halting the spread of infection. Recently, the outbreak of this virus has severely affected people around the world with increasing death rates. The increased death rates are because of its spreading nature among people, mainly through physical interactions.

View Article and Find Full Text PDF

In recent years, the prevalence of technological advances has led to an enormous and ever-increasing amount of data that are now commonly available in a streaming fashion. In such nonstationary environments, the underlying process generating the data stream is characterized by an intrinsic nonstationary or evolving or drifting phenomenon known as concept drift. Given the increasingly common applications whose data generation mechanisms are susceptible to change, the need for effective and efficient algorithms for learning from and adapting to evolving or drifting environments can hardly be overstated.

View Article and Find Full Text PDF

Currently, ensuring that power systems operate efficiently in stable and secure conditions has become a key challenge worldwide. Various unwanted events including injections and faults, especially within the generation and transmission domains are major causes of these instability menaces. The earlier operators can identify and accurately diagnose these unwanted events, the faster they can react and execute timely corrective measures to prevent large-scale blackouts and avoidable loss to lives and equipment.

View Article and Find Full Text PDF

Low power wide area network (LPWAN) is among the fastest growing networks in Internet of Things (IoT) technologies. Owing to varieties of outstanding features which include long range communication and low power consumption, LPWANs are fast becoming the most widely deployed connectivity standards in IoT domain. However, this promising network are exposed to various security and privacy threats and challenges.

View Article and Find Full Text PDF

In this paper, we study the implications of using a form of network coding known as Random Linear Coding (RLC) for unicast communications from an economic perspective by investigating a simple scenario, in which several network nodes, the users, download files from the Internet via another network node, the sender, and the receivers as users pay a certain price to the sender for this service. The mean packet delay for a transmission scheme with RLC is analyzed and applied into an optimal pricing model to characterize the optimal admission rate, price and revenue. The simulation results show that RLC achieves better performance in terms of both mean packet delay and revenue compared to the basic retransmission scheme.

View Article and Find Full Text PDF

The advent of wireless sensor networks (WSN) has opened up an array of applications. Due to the ad-hoc nature of WSN and the small size of wireless nodes, multiple system configurations are possible. In order to collect data from WSN, some systems utilize static nodes with a network setup that consists of multiple relays to facilitate the dissemination of data to a gateway.

View Article and Find Full Text PDF

The baroreflex being a key modulator of cardiovascular control ensures adequate blood pressure regulation under orthostatic stress which otherwise may cause severe hypotension. Contrary to conventional baroreflex sensitivity indices derived across a-priori traditional frequency bands, the present study is aimed at proposing new indices for the assessment of baroreflex drive which follows active (supine to stand-up) and passive (supine to head-up tilt) postural changes. To achieve this, a novel system identification approach of principal dynamic modes (PDM) was utilized to extract data-adaptive frequency components of closed-loop interactions between beat-to-beat interval and systolic blood pressure recorded from 10 healthy humans.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbl153iiiii8dsruqn57i5d3avpt44kvc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once