Publications by authors named "Khin A San"

We present the synthesis of metal oxide frameworks composed of [NaPWO] assembled with Mn, Fe, Co, Ni, Cu, or Zn bridging metal ions. X-ray diffraction shows that the frameworks adopt the same assembly regardless of bridging metal ion. Furthermore, our synthesis allows for the assembly of isostructural frameworks with mixed-metal ion bridges, or with clusters that have been doped with Mo, providing a high degree of compositional diversity.

View Article and Find Full Text PDF

Alkanethiolate-capped palladium nanoparticles (PdNPs) have previously been synthesized by using a modified Brust-Schiffrin synthesis (using alkanethiosulfate instead of alkanethiol), in which the nanoparticle core size is established during alkanethiosulfate ligand passivation of the nanoparticle nucleation-growth initiated by borohydride reduction. Because of the dependence of core size on the amount of ligand present, surface ligand density decreases with increasing core size. Herein we present a method in which the core size is established independent of ligand addition, allowing the formation of PdNPs with similar core sizes yet different surface ligand densities.

View Article and Find Full Text PDF

Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium -alkylthiosulfates) allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir) capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols.

View Article and Find Full Text PDF

Stable and isolable alkanethiolate-stabilized Pt nanoparticles (PtNP) were synthesized using the two-phase thiosulfate method with sodium S-alkylthiosulfate as ligand precursor. The mechanistic formation of octanethiolate-capped PtNP (Pt-SC) from both sodium S-octylthiosulfate and 1-octanethiol ligands was investigated by using H NMR and UV-vis spectroscopies, which revealed the formation of different Pt complexes as the reaction intermediates. The synthesis using S-octylthiosulfate ligand precursor produced Pt-SC in higher yields than that using 1-octanethiol ligand.

View Article and Find Full Text PDF