Ethnopharmacological Relevance: The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Cannabidiol (CBD) is a non-psychoactive compound derived from . It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability.
View Article and Find Full Text PDFNanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis.
View Article and Find Full Text PDFIn this study, we synthesized hollow porous iron oxide nanoparticles (HPIONPs) with surface modifications using polymers, specifically chitosan (Chi), polyethylene glycol (PEG), and alginate (Alg), to improve colloidal stability and biocompatibility. For colloidal stability, Alg-coated HPIONPs maintained size stability up to 24 h, with only an 18% increase, while Chi, PEG, and uncoated HPIONPs showed larger size increases ranging from 64 to 140%. The biocompatibility of polymer-coated HPIONPs was evaluated by assessing their cell viability, genotoxicity, and hemocompatibility.
View Article and Find Full Text PDFFolate receptors (FRs) highly expressed in breast cancers can be used as a recognized marker for preventing off-target delivery of chemotherapeutics. In this study, folic acid (FA)-grafted chitosan-alginate nanocapsules (CS-Alg-NCs) loaded with turmeric oil (TO) were developed for breast cancer targeting. CS was successfully conjugated with FA via an amide bond with a degree of substitution at 12.
View Article and Find Full Text PDFFavipiravir (FVR) is a repurposed antiviral drug for treating mild to moderate cases of the novel coronavirus disease 2019 (COVID-19). However, its poor solubility and permeability limit its clinical efficacy. To overcome its physicochemical and pharmacokinetic limitations, we statistically designed a mucoadhesive chitosan-alginate nanoparticles (MCS-ALG-NPs) as a new carrier for FVR using response surface methodology, which provided suitable characteristics for transmucosal delivery.
View Article and Find Full Text PDFTurmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells.
View Article and Find Full Text PDFChitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization.
View Article and Find Full Text PDFMupirocin is a promising broad-spectrum antibiotic that is effective in treating MRSA infections. However, due to its rapid elimination and hydrolysis following injection and high protein binding, current therapeutic use is limited to topical administration. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug degradation by encapsulation.
View Article and Find Full Text PDF