Publications by authors named "Kheng Newick"

The field of cancer immunotherapy has been re-energized by the application of chimeric antigen receptor (CAR) T cell therapy in cancers. These CAR T cells are engineered to express synthetic receptors that redirect polyclonal T cells to surface antigens for subsequent tumor elimination. Many CARs are designed with elements that augment T cell persistence and activity.

View Article and Find Full Text PDF

Foxp3+ T-regulatory (Treg) cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or "secondary" modulation, e.g. using anti-CTLA-4 monoclonal antibody.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.

View Article and Find Full Text PDF

Antitumor treatments based on the infusion of T cells expressing chimeric antigen receptors (CAR T cells) are still relatively ineffective for solid tumors, due to the presence of immunosuppressive mediators [such as prostaglandin E2 (PGE2) and adenosine] and poor T-cell trafficking. PGE2 and adenosine activate protein kinase A (PKA), which then inhibits T-cell receptor (TCR) activation. This inhibition process requires PKA to localize to the immune synapse via binding to the membrane protein ezrin.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally occurring and genetically modified tumor-infiltrating lymphocytes (TIL) by inhibitory receptors (IR), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T-cell activity against solid tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Histone deacetylases (HDACs) are often elevated in cancer and targeted for therapy, but inhibiting them can also weaken the immune response, allowing tumors to evade detection.
  • A study on HDAC5-deficient mice showed that while they don’t develop autoimmune diseases, their T-regulatory cells lose suppressive function and struggle to form effectively.
  • Ultimately, targeting HDAC5 did not enhance anticancer immunity, as CD8(+) T cells showed decreased cytokine production, indicating a complex relationship between HDAC5, immune cell function, and cancer response.
View Article and Find Full Text PDF

Purpose: Tumor-infiltrating lymphocytes (TILs) become hypofunctional, although the mechanisms are not clear. Our goal was to generate a model of human tumor-induced TIL hypofunction to study mechanisms and to test anti-human therapeutics.

Experimental Design: We transduced human T cells with a published, optimized T-cell receptor (TCR) that is directed to a peptide within the cancer testis antigen, NY-ESO-1.

View Article and Find Full Text PDF

Dysregulation of signaling pathways and energy metabolism in cancer cells enhances production of mitochondrial hydrogen peroxide that supports tumorigenesis through multiple mechanisms. To counteract the adverse effects of mitochondrial peroxide many solid tumor types up-regulate the mitochondrial thioredoxin reductase 2--thioredoxin 2 (TRX2)--peroxiredoxin 3 (PRX3) antioxidant network. Using malignant mesothelioma cells as a model, we show that thiostrepton (TS) irreversibly disables PRX3 via covalent crosslinking of peroxidatic and resolving cysteine residues in homodimers, and that targeting the oxidoreductase TRX2 with the triphenylmethane gentian violet (GV) potentiates adduction by increasing levels of disulfide-bonded PRX3 dimers.

View Article and Find Full Text PDF

Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASC) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas.

View Article and Find Full Text PDF

Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity toward B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR).

View Article and Find Full Text PDF

We evaluated a neutralizing anti-TGFβ antibody (GC1008) in cancer patients with malignant pleura mesothelioma (MPM). The goal of this study was to assess immunoregulatory effects in relation to clinical safety and clinical response. Patients with progressive MPM and 1-2 prior systemic therapies received GC1008 at 3mg/kg IV over 90 min every 21 d as part of an open-label, two-center Phase II trial.

View Article and Find Full Text PDF

Malignant mesothelioma (MM) is an intractable tumor of the peritoneal and pleural cavities primarily linked to exposure to asbestos. Recently, we described an interplay between mitochondrial-derived oxidants and expression of FOXM1, a redox-responsive transcription factor that has emerged as a promising therapeutic target in solid malignancies. Here we have investigated the effects of nitroxides targeted to mitochondria via triphenylphosphonium (TPP) moieties on mitochondrial oxidant production, expression of FOXM1 and peroxiredoxin 3 (PRX3), and cell viability in MM cells in culture.

View Article and Find Full Text PDF

Thiostrepton (TS) is a thiazole antibiotic that inhibits expression of FOXM1, an oncogenic transcription factor required for cell cycle progression and resistance to oncogene-induced oxidative stress. The mechanism of action of TS is unclear and strategies that enhance TS activity will improve its therapeutic potential. Analysis of human tumor specimens showed FOXM1 is broadly expressed in malignant mesothelioma (MM), an intractable tumor associated with asbestos exposure.

View Article and Find Full Text PDF

Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1].

View Article and Find Full Text PDF