Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model.
View Article and Find Full Text PDFNanobiotechnology strategies for cancer treatments are currently being tested with increasing interest, except in elderly groups. It is well established that breast cancer incidence increases with age and that traditional therapies usually generate severe adverse effects, especially for elderly groups. To investigate if the benefits of nanotechnology could be extended to treating cancer in this group, citrate-coated maghemite nanoparticles (NpCit) were used for magnetohyperthermia (MHT) in combination with the administration of PLGA-Selol nanocapsule (NcSel), a formulation with antioxidant and antitumor activity.
View Article and Find Full Text PDFTopical application of aluminum-chloride phthalocyanine (AlClPc) is a challenge because of the drug's extremely low solubility, which prevents its absorption into deeper skin layers and causes molecule aggregation, reducing the photophysical effect. The goal of this study was to obtain a formulation applied in a certain condition that would allow homogeneous accumulation of AlClPc in cutaneous tissues, meaning a safer and non-invasive topical treatment for skin tumors based on photodynamic therapy. We first prepared and characterized AlClPc complexes with cyclodextrin to increase the photosensitizing agent solubility.
View Article and Find Full Text PDF