Publications by authors named "Kheira Marouf-Khelifa"

The development of new catalysts from abundant raw materials, generating attractive photocatalytic activity, constitutes a real challenge in the context of sustainable development concerns. In this setting, a dolomite was treated at 800 °C (D800) and then chemically modified by Ca(NO) (CaD800) using a simple procedure. The resulting materials were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy (EDS), solid state UV spectroscopy, and used as catalysts of pentachlorophenol (PCP) degradation in aqueous solutions under UV light irradiation.

View Article and Find Full Text PDF

Dolomite was treated at 800 °C (D800), characterized, and used in the adsorptive removal of catechol (1,2-dihydroxybenzene) from aqueous solutions. The performances of the D800 sample, named dolomitic solid, were compared with those of the raw material. A bibliographic review shows that the data on the adsorption of phenolic compounds by dolomites are non-existent.

View Article and Find Full Text PDF

Intercalated halloysites with sodium acetate at various contact time were prepared. The resulting materials were characterised by X-ray powder diffraction, Fourier transformed infrared spectroscopy, scanning electronic microscopy, and specific surface area evaluation. The modified halloysites were employed as Cu(II) adsorbents from aqueous solutions.

View Article and Find Full Text PDF

The plasma-chemical degradation of Forafac 1110, a perfluorinated non-ionic surfactant, in aqueous solutions was investigated using TiO2 catalysts. The considered plasma was the gliding arc in humid air, which results from an electric discharge at atmospheric pressure and quasi-ambient temperature. Two titanium dioxide powders were used and their synergistic effects on the Forafac degradation were compared.

View Article and Find Full Text PDF

The partial decomposition of dolomite carried out within the temperature range 600-1000 degrees C provides new sorbents, called dolomitic sorbents. Their surface properties and identification by X-ray diffraction are discussed. The lowest specific surface area value was found for the raw dolomite, while the highest value was achieved by the D-1000 sample.

View Article and Find Full Text PDF