We combine IR pump and XUV probe laser pulses to visualize the Kramers-Henneberger (KH) state of the potassium atom. We demonstrate that ionization of such an atom exhibits some molecular-like features such as low order interference maxima in photoelectron momentum spectra. The locations of these maxima allow to estimate spatial dimensions of the KH atom and can be used for accurate calibration of high intensity laser fields.
View Article and Find Full Text PDFWe study propagation effects due to the finite speed of light in ionization of extended molecular systems. We present a general quantitative theory of these effects and show under which conditions such effects should appear. The finite speed of light propagation effects are encoded in the non-dipole terms of the time-dependent Shrödinger equation and display themselves in the photoelectron momentum distribution projected on the molecular axis.
View Article and Find Full Text PDFCent European J Urol
November 2020
Introduction: The aim of our study was to evaluate whether a biopsy from the tumor base after transurethral resection of bladder tumor (TURBT) has an impact on subsequent management of patients with bladder tumors. While tumor base biopsy at the completion of TURBT is a common practice, there is no definition of its role within the major international professional guidelines.
Material And Methods: We retrospectively reviewed the records of consecutive patients undergoing TURBT between 2015 and 2019 at our institution.
Phys Rev Lett
November 2019
Attosecond angular streaking (or "attoclock") is an insightful technique for probing the ultrafast electron dynamics in strong laser fields. Up until recently, this technique relied solely on an accurate measurement of the photoelectron momentum distribution and has remained restricted to atomic targets. Here, we propose a novel attosecond angular streaking scheme applicable to molecules, for which the ionic fragments of dissociative ionization are detected in the polarization plane of a close-to-circular polarized laser light.
View Article and Find Full Text PDFThe tunnelling of a particle through a potential barrier is a key feature of quantum mechanics that goes to the core of wave-particle duality. The phenomenon has no counterpart in classical physics, and there are no well constructed dynamical observables that could be used to determine 'tunnelling times'. The resulting debate about whether a tunnelling quantum particle spends a finite and measurable time under a potential barrier was reignited in recent years by the advent of ultrafast lasers and attosecond metrology.
View Article and Find Full Text PDFWe present and demonstrate an experimental scheme that enables overlap-free reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) measurements at high extreme-ultraviolet (XUV) photon energies. A compact passively-stabilized attosecond beamline employing a multilayer (ML) mirror allows us to obtain XUV pulses consisting of only two odd high-harmonic orders from an attosecond pulse train (APT). We compare our new technique to existing schemes that are used to perform RABBITT measurements and discuss how our scheme resolves the limitations imposed by spectral complexity of the harmonic comb at high photon energies.
View Article and Find Full Text PDFPhys Rev Lett
October 2018
We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.
View Article and Find Full Text PDFWe demonstrate a clear similarity between attoclock offset angles and Rutherford scattering angles taking the Keldysh tunneling width as the impact parameter and the vector potential of the driving pulse as the asymptotic velocity. This simple model is tested against the solution of the time-dependent Schrödinger equation using hydrogenic and screened (Yukawa) potentials of equal binding energy. We observe a smooth transition from a hydrogenic to "hard-zero" intensity dependence of the offset angle with variation of the Yukawa screening parameter.
View Article and Find Full Text PDFAttosecond photoemission delays for all the valence (5p, 5p, 5s, 4d, 4d) subshells of xenon have been accessed using the interferometric RABBITT technique. The 4d subshell delays in Xe have been accessed for the first time, to the best of our knowledge, due to the high photon energy used. A novel technique of single-shot referencing in the collinear back-focusing geometry has been introduced.
View Article and Find Full Text PDFAttosecond metrology of atoms has accessed the time scale of the most fundamental processes in quantum mechanics. Transferring the time-resolved photoelectric effect from atoms to molecules considerably increases experimental and theoretical challenges. Here we show that orientation- and energy-resolved measurements characterize the molecular stereo Wigner time delay.
View Article and Find Full Text PDFThe original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσ orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig.
View Article and Find Full Text PDFThe toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei.
View Article and Find Full Text PDFWe solve the time-dependent Schrödinger equation describing a water molecule driven by a superposition of the extreme ultraviolet and IR pulses typical for a reconstruction of attosecond beating by interference of two-photon transitions experiment. This solution is obtained by a combination of the time-dependent coordinate scaling and the density functional theory with self-interaction correction. Results of this solution are used to determine the time delay in photoionization of the water and hydrogen molecules.
View Article and Find Full Text PDFSingle-photon laser-enabled Auger decay (spLEAD) is predicted theoretically [B. Cooper and V. Averbukh, Phys.
View Article and Find Full Text PDFIn three experiments with mice ( Mus musculus ) and rats (Rattus norvigicus), we used a switch paradigm to measure quantitative properties of the interval-timing mechanism. We found that: 1) Rodents adjusted the precision of their timed switches in response to changes in the interval between the short and long feed latencies (the temporal goalposts). 2) The variability in the timing of the switch response was reduced or unchanged in the face of large trial-to-trial random variability in the short and long feed latencies.
View Article and Find Full Text PDFPhys Rev Lett
September 2016
We study the time delay in the primary photoemission channel near the opening of an additional channel and compare it with the Wigner time delay in elastic scattering of the photoelectron near the corresponding inelastic threshold. The photoemission time delay near threshold is significantly enhanced, to a measurable 40 as, in comparison to the corresponding elastic scattering delay. The enhancement is due to the different lowest order of interelectron interaction coupling the primary and additional photoemission channels.
View Article and Find Full Text PDFThis work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory.
View Article and Find Full Text PDFWe study transverse electron momentum distribution in strong field atomic ionization driven by laser pulses with varying ellipticity. We show, both experimentally and theoretically, that the transverse electron momentum distribution in the tunneling and over the barrier ionization regimes evolves in a qualitatively different way when the ellipticity parameter describing polarization state of the driving laser pulse increases.
View Article and Find Full Text PDFWe describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
March 2014
We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision.
View Article and Find Full Text PDFWe investigate the single-photon double ionization of helium at photon energies of 440 and 800 eV. We observe doubly charged ions with close to zero momentum corresponding to electrons emitted back to back with equal energy. These slow ions are the unique fingerprint of an elusive quasifree photon double ionization mechanism predicted by Amusia et al.
View Article and Find Full Text PDFThe double photoionization of Mg has been studied experimentally and theoretically in a kinematic where the two photoelectrons equally share the excess energy. The observation of a symmetrized gerade amplitude, which strongly deviates from the Gaussian ansatz, is explained by a two-electron interference predicted theoretically, but never before observed experimentally. Similar to the Cooper minima in the single photoionization cross section, the effect finds its origin in the radial extent and oscillation of the target wave function.
View Article and Find Full Text PDFOur data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer.
View Article and Find Full Text PDF