Zinc oxide nanoparticles (ZnO-NPs) are among the most commonly used nano-fertilizers (NF). However, elevated levels of ZnO-NPs in soil may affect plant growth and development due to its potential toxicity when accumulated in large amounts in plant tissues. This research was conducted using an in situ rhizobox system with the aims of evaluating zinc uptake from nano-zinc oxide amended rhizosphere soil by alfalfa plant and the effect of plant growth-promoting microorganisms on alleviating the phytotoxicity of ZnO-NPs.
View Article and Find Full Text PDFActinomycetes are prolific sources of bioactive molecules. Traditional workflows including bacterial isolation, fermentation, metabolite identification and structure elucidation have resulted in high rates of natural product rediscovery in recent years. Recent advancements in multi-omics techniques have uncovered cryptic gene clusters within the genomes of actinomycetes, potentially introducing vast resources for the investigation of bioactive molecules.
View Article and Find Full Text PDFVirus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes () and () as targets.
View Article and Find Full Text PDFAims: The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress.
View Article and Find Full Text PDFAims: The present study aimed at gaining an insight into the abundance and genetic diversity of culturable N-fixing epiphyte bacteria on the phyllosphere of maize in arid and semi-arid regions of Iran.
Methods And Results: Leaf samples of the maize variety, 'single cross 704' (Zea mays L.) were collected from different locations in Iran.
Application of siderophore-producing microorganisms (SPMs), as an environmentally friendly approach, facilitates plant growth and survival under heavy metals toxicity. This study evaluated the effectiveness of SPMs, belonging to the bacterial genera Rhizobium and Pseudomonas and a root endophytic fungus (Piriformospora indica) to improve the fitness of alfalfa under cadmium (Cd) stress. A greenhouse experiment was performed as a randomized design with factorial arrangement of treatments.
View Article and Find Full Text PDFBeneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics-based technologies has broadened our understanding of the molecular aspects of beneficial plant-microbe symbiosis.
View Article and Find Full Text PDFPiriformospora indica (P. indica), an endophytic root fungus, supports the growth and enhanced tolerance of plants to biotic and abiotic stresses. Several recent studies showed the significant role of small RNA (sRNA) molecules including microRNAs (miRNAs) in plant adaption to environmental stress, but little is known concerning the symbiosis-mediated salt stress tolerance regulated at miRNAs level.
View Article and Find Full Text PDFMol Plant Microbe Interact
July 2019
Geminiviruses (family ) are among the most devastating plant viruses worldwide, causing severe damage in crops of economic and subsistence importance. These viruses have very compact genomes and many of the encoded proteins are multifunctional. Here, we investigated the role of the East African cassava mosaic Cameroon virus (EACMCV) AC4 on virus infectivity in .
View Article and Find Full Text PDFThe complete genome sequence was determined and characterized for a previously unreported bipartite begomovirus from fluted pumpkin (Telfairia occidentalis, family Cucurbitaceae) plants displaying mosaic symptoms in Cameroon. The DNA-A and DNA-B components were ~2.7 kb and ~2.
View Article and Find Full Text PDFHere, we report the complete genome sequence of a novel bipartite begomovirus isolated from cotton plants (Gossypium raimondii, Malvaceae) exhibiting light yellow mosaic symptoms. The genome sequence was determined by Illumina DNA sequencing and confirmed by Sanger sequencing of RCA-enriched, cloned circular genomic components. The DNA-A and DNA-B components were each ~2.
View Article and Find Full Text PDFThe root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants.
View Article and Find Full Text PDFBackground: Small RNAs (sRNAs) are endogenous sRNAs that play regulatory roles in plant growth, development, and biotic and abiotic stress responses. In plants, one subset of sRNAs, microRNAs (miRNAs) exhibit tissue-differential expression and regulate gene expression mainly through direct cleavage of mRNA or indirectly via production of secondary phased siRNAs (phasiRNAs) that silence cognate target transcripts in trans.
Results: Here, we have identified cassava (Manihot esculenta Crantz) miRNAs using high resolution sequencing of sRNA libraries from leaf, stem, callus, male and female flower tissues.
A procedure to regenerate cassava (Manihot esculenta Crantz) cultivars from Cameroon via somatic embryogenesis (SE) was developed. Shoot apical meristems and immature leaf lobes were used as explants on Murashige and Skoog (MS) basal medium containing 33 or 50 µM of the auxins Picloram (Pic), 2,4-Dichlorophenoxyacetic acid (2,4-D), Dicamba (Dic), and α-Naphthalene acetic acid. Cultivar performance was assessed using SE and number of somatic embryos produced.
View Article and Find Full Text PDFThe modification of avirulence factors of plant viruses by one or more amino acid substitutions converts avirulence to virulence on hosts containing resistance genes. Limited experimental studies have been conducted on avirulence/virulence factors of plant viruses, in particular those of potyviruses, to determine whether avirulence/virulence sites are conserved among strains. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to determine whether: (i) avirulence/virulence determinants of SMV reside exclusively on P3 regardless of virus strain; and (ii) the sites residing on P3 and crucial for avirulence/virulence of isolates belonging to strain G2 are also involved in virulence of avirulent isolates belonging to strain G7.
View Article and Find Full Text PDFUnlabelled: Piriformospora indica is a mutualistic root endophytic fungus, which transfers several benefits to hosts including enhance plant growth and increase yield under both normal and stress conditions. It has been shown that P. indica root-colonization enhances water stress tolerance based on general and non-specific plant-species mechanism.
View Article and Find Full Text PDFThe multigenic Rsv1 locus in the soybean plant introduction (PI) 'PI96983' confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV-N, but not SMV-G7 and SMV-G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as 'Williams82' (rsv1), SMV-N induces severe disease symptoms and accumulates to a high level, whereas both SMV-G7 and SMV-G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV-N on Rsv1-genotype soybean requires concurrent mutations in both the helper-component proteinase (HC-Pro) and P3 cistrons.
View Article and Find Full Text PDFPiriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses.
View Article and Find Full Text PDFEthylene (ET) is a gaseous phytohormone that participates in various plant physiological processes and essentially contributes to plant immunity. ET conducts its functions by regulating the expression of ET-responsive genes or in crosstalk with other hormones. Several recent studies have shown the significance of ET in the establishment and development of plant-microbe interactions.
View Article and Find Full Text PDFThe complex Rsv1 locus in soybean plant introduction (PI) 'PI96983' confers extreme resistance (ER) against Soybean mosaic virus (SMV) strain N but not SMV-G7 and SMV-G7d. Both the SMV helper-component proteinase (HC-Pro) and P3 cistrons can serve as avirulence factors recognized by Rsv1. To understand the genetics underlying recognition of the two cistrons, we have utilized two soybean lines (L800 and L943) derived from crosses between PI96983 (Rsv1) and Lee68 (rsv1) with distinct recombination events within the Rsv1 locus.
View Article and Find Full Text PDFAlfalfa mosaic virus (AMV), a pathogen of a wide range of plant species, including Glycine max (soybean), is poorly immunogenic. Polyclonal antibodies were generated against bacterially expressed recombinant coat proteins (rCPs) of two biologically distinct AMV strains in rabbits and compared with those raised against native and glutaraldehyde-treated virions of the same strains. Analyses showed that sera against rCPs had comparable antibody titers in indirect enzyme-linked immunosorbent assay with those raised against virions when soybean sap containing homologous viruses served as antigens.
View Article and Find Full Text PDFResistance to Soybean mosaic virus (SMV) in soybean is conferred by three dominant genes: Rsv1, Rsv3 and Rsv4. Over the years, scientists in the USA have utilized a set of standard pathotypes, SMV-G1 to SMV-G7, to study interaction with Rsv-genotype soybeans. However, these pathotypes were isolated from a collection of imported soybean germplasm over 30 years ago.
View Article and Find Full Text PDFThe mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction.
View Article and Find Full Text PDFFEMS Microbiol Lett
October 2007
The root systems of most terrestrial plants are confronted with a huge variety of invasive microorganisms that either can cause detrimental effects or in case of mutualistic symbiosis provide benefits for the host. In either case, establishment of the parasitic or mutualistic interaction is the result of a highly sophisticated cross-talk between the partners. Despite the ecological importance of mutualistic symbioses, the molecular events accompanied by this phenomenon are far from being understood.
View Article and Find Full Text PDF