Publications by authors named "Khaspekov L"

The endogenous cannabinoid system (ECS) of the brain plays an important role in the molecular pathogenesis of Parkinson's disease (PD). It is involved in the formation of numerous clinical manifestations of the disease by regulating the level of endogenous cannabinoids and changing the activation of cannabinoid receptors (CBRs). Therefore, ECS modulation with new drugs specifically designed for this purpose may be a promising strategy in the treatment of PD.

View Article and Find Full Text PDF

Astrocytes perform a wide range of important functions in the brain. As structural and functional components of synapses, astrocytes secrete various factors (proteins, lipids, small molecules, etc.) that bind to neuronal receptor and contribute to synaptogenesis and regulation of synaptic contacts.

View Article and Find Full Text PDF

In primary dissociated hippocampal cell cultures from 18-day-old mouse embryos, streptozotocin in concentrations of 2-5 mM produced a dose-dependent cytotoxic effect on day 3 in vitro, whereas on day 11 of culturing, the neurons were resistant to streptozotocin. The neurons in the 3-day cultures were functionally immature, which was seen from their weak spontaneous bioelectric activity in the form of rare single action potentials; by day 11 of culturing, the neurons reached a high level of differentiation and their functional properties acquired a character of network burst activity. Thus, streptozotocin had the most pronounced cytotoxic effect on immature hippocampal neurons in vitro.

View Article and Find Full Text PDF

The review summarizes the results of studies on the cellular and molecular mechanisms mediating the impact of stress on the pathogenesis of neurodegenerative brain pathologies (Alzheimer's disease, Parkinson's disease, etc.) and presents current information on the role of stress in the hyperphosphorylation of tau protein, aggregation of beta-amyloid, and hyperactivation of the hypothalamic-pituitary-adrenal axis involved in the hyperproduction of factors that contribute to the pathogenetic role of stress in neurodegeneration. The data on the participation of microglia in the effects of stress on the pathogenesis of neurodegenerative diseases are presented.

View Article and Find Full Text PDF

The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment.

View Article and Find Full Text PDF

Thymoquinone is one of the main active components of the essential oil from black cumin (Nigella sativa) seeds. Thymoquinone exhibits a wide range of pharmacological activities, including neuroprotective action demonstrated in the models of brain ischemia/reperfusion, Alzheimer's and Parkinson's diseases, and traumatic brain injury. The neuroprotective effect of thymoquinone is mediated via inhibition of lipid peroxidation, downregulation of proinflammatory cytokines, maintenance of mitochondrial membrane potential, and prevention of apoptosis through inhibition of caspases-3, -8, and -9.

View Article and Find Full Text PDF

Development of therapeutic preparations involves several steps, starting with the synthesis of chemical compounds and testing them in different models for selecting the most effective and safest ones to clinical trials and introduction into medical practice. Cultured animal cells (both primary and transformed) are commonly used as models for compound screening. However, cell models display a number of disadvantages, including insufficient standardization (primary cells) and disruption of cell genotypes (transformed cells).

View Article and Find Full Text PDF

In the model of induced neuronal resistance to the toxic effect of glutamate (deprivation of trophic factors), exosome secretion is demonstrated. Exosomes are secreted at the development of resistance during deprivation and at the first 24 h after preconditioning, as was shown by dot blot of extracellular fluid using anti-CD63 antibody. The autophagy inhibitor bafilomycin (0.

View Article and Find Full Text PDF

The prevalent form of familial parkinsonism is caused by mutations in the LRRK2 gene encoding for the mitochondrial protein kinase. In the review, we discuss possible causes of appearance of tetraploid cells in neuronal precursors obtained from induced pluripotent stem cells from patients with the LRRK2-associated form of parkinsonism after genome editing procedure. As LRRK2 protein participates in cell proliferation and maintenance of the nuclear envelope, spindle fibers, and cytoskeleton, mutations in the LRRK2 gene can affect protein functions and lead, via various mechanisms, to the mitotic machinery disintegration and chromosomal aberration.

View Article and Find Full Text PDF

We performed a cytogenetic analysis of the results of CRISPR/Cas9-correction of G2019S mutation in LRRK2 gene associated with Parkinson's disease. Genome editing was performed on induced pluripotent stem cells derived from fibroblasts of a patient carrying this mutation. A mosaic variant of tetraploidy 92 XXYY/46,XY (24-43% cells from various clones) was found in neuronal precursors differentiated from the induced pluripotent stem cells after gene editing procedure.

View Article and Find Full Text PDF

Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range.

View Article and Find Full Text PDF

Differential expression of type 1 cannabinoid receptors (CR1) was evaluated at different stages of human skin fibroblast transformation into terminally differentiated neurons. Immunocytochemical staining detected no CR1 on fibroblasts, but their transformation into induced pluripotent stem cells was accompanied by marked stimulation of CR1 expression. In neuronal precursors, the receptors were located mainly on cell bodies and at the base of their processes.

View Article and Find Full Text PDF

In this review we summarize published data on the involvement of glial cells in molecular mechanisms underlying brain plastic reorganization in epilepsy. The role of astrocytes as glial elements in pathological plasticity in epilepsy is discussed. Data on the involvement of aquaporin-4 in epileptogenic plastic changes and on participation of microglia and extracellular matrix in dysregulation of synaptic transmission and plastic remodeling in epileptic brain tissue are reviewed.

View Article and Find Full Text PDF

Cortexin, a drug containing hydrolyzed brain peptides, has long been used in clinics, but the mechanisms of its action remain obscure. We have hypothesized that cortexin-related neuroprotection is associated with the ability of the drug to inhibit brain proteases. Cortexin effectively inhibited brain caspase-8, while its effects on caspase-1, -3, -9, cathepsin B and calpain were much less pronounced or absent.

View Article and Find Full Text PDF

Copper (Cu) is an essential metal presented in the mammalian brain and released from synaptic vesicles following neuronal depolarization. However, the disturbance of Cu homeostasis results in neurotoxicity. In our study we performed for the first time a combined functional investigation of cultured hippocampal neurons under Cu exposure, its effect on spontaneous spike activity of hippocampal neuronal network cultured on multielectrode array (MEA), and development of long-term potentiation (LTP) in acute hippocampal slices in the presence of Cu.

View Article and Find Full Text PDF

Objective: Investigation of the neuroprotective properties of lithium ascorbate on the stress models in vivo and in vitro.

Material And Methods: Neurocytological and behavioral studies on nerve cell culture and animal stress models.

Results: Significant neuroprotective effect of lithium ascorbate in neuronal cultures exposed to glutamate toxicity and adaptogenic effect of this drug in stress model in rats were shown.

View Article and Find Full Text PDF

One of the strategies to induce tolerance of neurons to toxic injury is preconditioning. Preconditioning is caused by a weak damage of cells, which become more resistant to subsequent, more severe damage. We found that preconditioning by deprivation of trophic factors, or deprivation of trophic factor and glucose effectively protects neurons against subsequent toxic effects of glutamate.

View Article and Find Full Text PDF

Parkinson's disease is caused by the degeneration of midbrain dopaminergic neurons. A rare recessive form of the disease may be caused by a mutation in the PARK2 gene, whose product, Parkin, controls mitophagy and programmed cell death. The level of pro- and anti-apoptotic factors of the Bcl-2 family was determined in dopaminergic neurons derived from the induced pluripotent stem cells of a healthy donor and a Parkinson's disease patient bearing PARK2 mutations.

View Article and Find Full Text PDF

Cultured cerebellar granule neurons (CGNs) are resistant to the toxic effect of ZnCl2 (0.005 mM, 3 h) and slightly sensitive to the effect of kainate (0.1 mM, 3 h).

View Article and Find Full Text PDF

Neuron ultrastructure was studied in layers III-V of rat brain neocortex 24 hours after intraperitoneal (n=3) or intravenous (n=3) injection of cell-free DNA (7.7x10(-5) g/kg body weight). A plastic restructuring of nuclear chromatin, nucleolar hypertrophy, deep invaginations of nuclear envelope, hyperplasia of mito- chondria and their close contact with other organelles and the nucleus, formation of cytoplasmic tubulovesicular bodies which may promote enhanced synaptic vesicle transport to presynaptic axonal terminals, activation of astrocyte glia were found.

View Article and Find Full Text PDF

A single intraperitoneal injection to rats of the mitochondria-targeted plastoquinone antioxidant SkQR1 at dose 1 µmol/kg significantly improved reproduction by the rats of the passive avoidance conditional reflex. In vitro experiments on hippocampal slices showed that a single intraperitoneal injection of SkQR1 24 h before the preparation of the slice significantly increases the synaptic transmission efficiency of the pyramidal neurons of the CA1 field. The findings indicate that SkQR1 has a positive effect on memory processes.

View Article and Find Full Text PDF

Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer's disease, and Parkinson's disease. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem.

View Article and Find Full Text PDF

A protective behavioral effect of a nerve growth factor dipeptide mimetic GK-2 in the model of open focal trauma of rat brain sensorimotor cortex and its antioxidative and regenerative properties in cultures of rat cerebellar granule cells and mouse embryonal spinal ganglion, respectively, were studied. Intraperitoneal injections of GK-2 (1 mg/kg) for 5 days daily after traumatic brain injury improved significantly motor function of limbs. Moreover, supplementation the incubation medium with GK-2 (0.

View Article and Find Full Text PDF

We studied the effect of endocannabinoid N-arachidonoyl dopamine on spontaneous bioelectric activity of cultured hippocampal neurons in a model of hypoxia/reoxygenation. Incubation under hypoxic conditions induced irreversible decrease in spontaneous bioelectric activity of neurons and their death. Application of N-arachidonoyl dopamine during hypoxia and in the post-hypoxic period preserved bioelectric activity and viability of neurons.

View Article and Find Full Text PDF

The neuroprotective effects of dipeptide GK-2h, a mimetic of nerve growth factor, in bifocal photoinduced ischemia in rat brain prefrontal cortex was studied. It was shown that GK-2h, injected intraperitonealy in dose 0.1 mg/kg in 1 h or 4 h after operation and then on 2nd, 4th and 8th days, prevented significantly on 9th day from increasing volume of cortical infarction.

View Article and Find Full Text PDF