Inspired by natural metallopeptides, our work focuses on engineering self-assembling nanostructures of -symmetric metallopeptide conjugates (MPC) from a pyridine-bis-tripeptide bioprobe that uniquely detects lead (Pb) ions by emitting a fluorescence signal at 450 nm, which is further intensified in the presence of DAPI ( = 458 nm), enhancing the bioimaging quality. This study enables precise lead quantification by modulating the ionic conformation and morphology. Experimental and theoretical insights elucidate the nanostructure formation mechanism, laying the groundwork for materials encapsulation and advancing lead detoxification.
View Article and Find Full Text PDFSelf-assembling short peptide amphiphiles, crafted through a minimalistic approach, spontaneously generate well-ordered nanostructures, facilitating the creation of precise nanostructured biomaterials for diverse biomedical applications. The seamless integration of bioactive metal ions and nanoparticles endows them with the potential to serve as pioneering materials in combating bacterial infections. Nanomanipulation of these molecules' binary structures enables effective penetration of membranes, forming structured nanoarchitectures with antibacterial properties.
View Article and Find Full Text PDFNovel insights into the etiology of metabolic disorders have recently been uncovered through the study of metabolite amyloids. In particular, inborn errors of metabolism (IEMs), including gout, Lesch-Nyhan syndrome (LNS), xanthinuria, citrullinemia, and hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, are attributed to the dysfunction of the urea cycle and uric acid pathway. In this study, we endeavored to understand and mechanistically characterize the aggregative property exhibited by the principal metabolites of the urea cycle and uric acid pathway, specifically hypoxanthine, xanthine, citrulline, and ornithine.
View Article and Find Full Text PDFStrategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria.
View Article and Find Full Text PDFThe microbiota-gut-brain axis (GBA) plays a critical role in the development of neurodegenerative diseases. Dysbiosis of the intestinal microbiome causes a significant alteration in the gut microbiota of Alzheimer's disease (AD) patients, followed by neuroinflammatory processes. Thus, AD beginning in the gut is closely related to an imbalance in gut microbiota, and hence a multidomain approach to reduce this imbalance by exerting positive effects on the gut microbiota is needed.
View Article and Find Full Text PDFAn effortless thermoplasmonic welding of multi-shaped gold nanosheets is achieved by ordinary and simple sunlight irradiation. A light-matter interaction occurred the nanogaps of smaller nanosheets, leading to the enhancement of the electromagnetic field and thus effectively concentrating the heat at the welding point. The sPA peptide nanostructure facilitates the nanowelding of small caged gold nanostructures.
View Article and Find Full Text PDFTryptocidine C (TpcC), a Trp-rich cyclodecapeptide is a minor constituent in the antibiotic tyrothricin complex from Brevibacillus parabrevis. TpcC possesses a high tendency to oligomerise in aqueous solutions and dried TpcC forms distinct self-assembled nanoparticles. High-resolution scanning electron microscopy revealed the influence of different ethanol:water solvent systems on TpcC self-assembly, with the TpcC, dried from a high concentration in 15% ethanol, primarily assembling into small nanospheres with 24.
View Article and Find Full Text PDFTo detect heavy metal toxicity using self-assembled nanostructures, a clathrin triskelion-inspired highly functional -symmetric trimerized biotinylated di-tryptophan peptide was used. This triskelion peptide is known to self-assemble into nanotorus-like structures and can therefore act as a nanocage for various analytes. In this work, in addition to spectroscopy, force and electron microscopy were successfully used to detect the effect of toxic metal ions such as zinc, cadmium, and mercury by exploiting the change in the nanotorus morphology.
View Article and Find Full Text PDFWe report for the very first time the crystal structure and self-assembly of a new aggregation-induced emission enhancement (AIEE) dye 4-(5-methoxythiazolo[4,5-]pyridin-2-yl)-,-dimethylaniline (TPA) and its application in sensing dichromate ions. TPA reveals cyan blue emission under UV and visible light. The self-assembly properties of TPA were studied extensively by scanning electron microscopy (SEM) which revealed the formation of beautiful flower-like morphologies.
View Article and Find Full Text PDFOver the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments.
View Article and Find Full Text PDFThe excessive production of endogenous hydrogen sulfide (HS) in cancer cells leads to enhanced tumor growth and metastasis. On the other hand, decreased endogenous HS suppresses tumor growth. The reported approaches for inhibiting tumor growth are selective silencing of the tumor-promoting genes and pharmacological inhibition of these proteins.
View Article and Find Full Text PDFThere is a plethora of significant research that illustrates toxic self-assemblies formed by the aggregation of single amino acids, such as phenylalanine, tyrosine, tryptophan, cysteine, and methionine, and their implication on the etiology of inborn errors of metabolisms (IEMs), such as phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria, and hypermethioninemia, respectively. Hence, studying the aggregation behavior of single amino acids is very crucial from the chemical neuroscience perspective to understanding the common etiology between single amino acid metabolite disorders and amyloid diseases like Alzheimer's and Parkinson's. Herein we report the aggregation properties of nonaromatic single amino acids l-proline (Pro), l-hydroxyproline (Hyp), and l-lysine hydrochloride (Lys).
View Article and Find Full Text PDFIn the present study, embellishment or beautification of diatoms on substrates like plastics, polydimethylsiloxane, graphite, glass plate, and titanium dioxide, triggered by exopolysaccharides was examined under laboratory conditions. Exopolysaccharides are secreted mainly by primary colonisers, bacteria, which is succeeded by secondary colonisers i.e.
View Article and Find Full Text PDFThe present study underlines the application of centrifugal force and pulse electric field techniques along with its comparison to resonance energy to harvest lipid from a fixed number of Pinnularia saprophila cells. Sulpho phospho vanillin method for lipid, and analysis of cells via microscopy was done. It was found that a centrifugal force of 11110×g for 15 min allowed ~3.
View Article and Find Full Text PDFSelf-assembling peptides based on aromatic amino acids can adopt diverse nanostructures which primarily depend on their molecular structures. Therefore, to understand the nature of self-assembly on the molecular level we rationally designed two constitutional isomers of short aromatic peptides. The first isomer consists of a tyrosine moiety at the N-terminus and the second isomer consists of a tyrosine moiety at the C-terminus of the FF peptide, a core recognition motif of Amyloid β peptides.
View Article and Find Full Text PDFStimuli-responsive self-destructing soft structures serve as versatile hosts for the encapsulation of guest molecules. A new paradigm for HS-responsive structures, based on a modified tripeptide construct, is presented along with microscopy evidence of its time-dependent rupture. As a medicinally interesting application, we employed these commercial antibiotic-loaded soft structures for successful drug release and inhibition of clinically relevant, drug-susceptible, and methicillin-resistant .
View Article and Find Full Text PDFWe highlight the structural diversity of strategically designed two short peptide amphiphiles (sPAs) and describe their structure-function relationship studies. The shuffling of two key amino acids, that is, tyrosine and phenylalanine, in a designed sPA lead to a pair of constitutional isomers. Such small and strategic alteration can bring a substantial change in the self-assembling pattern.
View Article and Find Full Text PDFWe report the aggregation and photophysical properties of a pyridothiazole-based, aggregation-induced, emission-enhancement (AIEE) luminogen 4-(5-methoxy-thiazolo[4,5-]pyridin-2-yl)benzoic acid (PTC1) and its application for the sensitive detection and monitoring of amyloid fibrillation. The aggregation properties of the AIEE probe were extensively studied by atomic force microscopy (AFM) and dynamic light scattering (DLS), and it was noted that as aggregation increases the fluorescence of PTC1 also was increased. The fluorescence of PTC1 was quenched upon the addition of cupric (Cu) ions, while the fluorescence is regenerated in the presence of amyloid fibers.
View Article and Find Full Text PDFOur previous report(s) demonstrated that piezoelectric disc fabricated diatom solar panels worked as micro resonating devices. Such devices have potential to harvest oils from living diatom cultures. However, it is observed that the collection and separation of oil from culture media using these devices are found to be difficult due to the presence of both living and dead diatom cells, which simultaneously get collected during this process.
View Article and Find Full Text PDFDiatoms are photosynthetic unicellular microalgae and are nature's hidden source of several biosynthetic metabolites with their use in biofuel, food and drug industries. They mainly contain various lipids, sterols, isoprenoids and toxins with their use in apoptotic, fertility controlling and cancer drugs. Chemical studies on diatoms are limited due to various limitations such as variation of nutrients, contaminants and change in seasonal factors in the environment.
View Article and Find Full Text PDFWe report the formation of gold nanoparticle (AuNP)-biotinylated triskelion peptide hybrid nanostructures. These structures were created by using self-organization and mimicking strategies to develop AuNP-ornamented peptide nanobangles with predetermined properties on biocompatible surfaces. Such intelligent and fascinating nanomaterials can be used for several bio-nanotechnological applications.
View Article and Find Full Text PDFWe report the design and synthesis of a biocompatible small-peptide-based compound for the controlled and targeted delivery of encapsulated bioactive metal ions through transformation of the internal nanostructures of its complexes. A tyrosine-based short-peptide amphiphile (sPA) was synthesized and observed to self-assemble into β-sheet-like secondary structures. The self-assembly of the designed sPA was modulated by application of different bioactive transition-metal ions, as was confirmed by spectroscopic and microscopic techniques.
View Article and Find Full Text PDFThis study demonstrates the beneficial role of di-tryptophan containing short peptide amphiphiles (sPA), for the synthesis and stabilization of AgNPs in the presence of sunlight followed by garlanding of AgNPs along the fibrous network of sPA. Such hybrid structures were precisely and selectively moulded into a nanowreath-type morphology due to the thermoplasmonic effect of AgNPs, and can be used for several bio-nanotechnological applications.
View Article and Find Full Text PDFWe report facile synthesis and structural study of ditryptophan-based short peptide amphiphilic (sPA) constructs, which were used to synthesize gold nanostructures, in the presence of sunlight. This process occurs concurrently with morphological transformation, followed by encapsulation of gold nanostructures to afford hybrid scaffolds of interest.
View Article and Find Full Text PDF