Carbon nanotube-glue composite gel-based surface-type elastic sensors with a cylindrical shape deformable (flexible) metallic body were fabricated for tactile pressure and compressive displacement sensing. The fabrication of the sensors was performed using the rubbing-in technique. The effect of the pressure and the compressive displacement on the capacitance and the impedance of the sensors were investigated at various frequencies (in the range of 1 kHz to 200 kHz).
View Article and Find Full Text PDFOptimized surface-type impedimetric and capacitive proximity sensors have been fabricated on paper substrates by using rubbing-in technology. The orange dye (OD) and silicone glue (SG) composite-gel films were deposited on the zig-zag gap between two aluminum electrodes fixed on a paper (dielectric) substrate. The effect of proximity of various objects (receivers) on the impedance and the capacitance of the sensors was investigated.
View Article and Find Full Text PDFThis work examines the physics of a non-invasive multi-functional elastic thin-film graphite flake-isoprene sulfone composite sensor. The strain design and electrical characterization of the stretching force, acceleration, and temperature were performed. The rub-in technique was used to fabricate graphite flakes and isoprene sulfone into sensors, which were then analyzed for their morphology using methods such as SEM, AFM, X-ray diffraction, and Fourier transform infrared spectroscopy to examine the device's surface and structure.
View Article and Find Full Text PDFPolymeric rubber and organic semiconductor HPc-CNT-composite-based surface- and sandwich-type shockproof deformable infrared radiation (IR) sensors were fabricated using a rubbing-in technique. CNT and CNT-HPc (30:70 wt.%) composite layers were deposited on a polymeric rubber substrate as electrodes and active layers, respectively.
View Article and Find Full Text PDFHere, we present the design, fabrication and characterization of shockproof rubber-jelly (NiPc-CNT-oil) composite-based resistors. To fabricate the resistors, gels of CNT and NiPc with edible oil were prepared and deposited on a flexible rubber substrate using rubbing-in technique. The devices' resistance and impedance were investigated under the effect of pressure, displacement, humidity, temperature and mechanical vibrations.
View Article and Find Full Text PDFThe flexible and shockproof rubber-based Al/OD-Gel/Cu electrochemical cell was designed, fabricated, and investigated for the detection of IR and UV irradiations. For this purpose, the transparent gel-orange dye composite was deposited on the porous rubber substrate between aluminum and copper electrodes. It was observed that the gel-orange dye composite was mechanically like a gel: soft and flexible.
View Article and Find Full Text PDFHere we present the fabrication of graphene and jelly (superabsorbent polymer) electrolyte composite-based shockproof flexible electrochemical sensors (Al/Gr-Jelly/Cu) and their properties under the effect of humidity and temperature. A layer of graphene mixed in jelly electrolyte was drop-casted onto porous rubber substrates between preliminary fixed aluminum (Al) and copper (Cu) electrodes followed by rubbing-in. It was observed that the graphene and jelly mixture was mechanically soft and flexible, similar to jelly.
View Article and Find Full Text PDFGlaucoma is a chronic ocular degenerative disease that can cause blindness if left untreated in its early stages. Deep Convolutional Neural Networks (Deep CNNs) and its variants have provided superior performance in glaucoma classification, segmentation, and detection. In this paper, we propose a two-staged glaucoma classification scheme based on Deep CNN architectures.
View Article and Find Full Text PDFGenerally, polymer-based memory devices store information in a manner distinct from that of silicon-based memory devices. Conventional silicon memory devices store charges as either zero or one for digital information, whereas most polymers store charges by the switching of electrical resistance. For the first time, this study reports that the novel conducting polymer Poly-N-Epoxy-Propyl Carbazole (PEPC) can offer effective memory storage behavior.
View Article and Find Full Text PDFThe present situation of COVID-19 diverted our focus towards utilizing the degraded solar cells for sensor application, this will help in global energy harvesting. So, here is our successful effort to reuse already degraded solar cells as ultraviolet (UV) and infrared (IR) sensor. The spin-coated perovskite (CHNHPbICl) has been already tested for visible light spectrum, as an extension to that now it is utilized as UV and IR intensity sensors to cover the whole spectrum.
View Article and Find Full Text PDFIn this research, due to the present pandemic of COVID-19, we are proposing a stable and fixed semitransparent photo-thermoelectric cell (PTEC) module for green energy harvesting. This module is based on the alloy of Bismuth Telluride Selenide (BiTeSe), designed in a press tablet form and characterized under solar energy. Here, both aspects of solar energy i.
View Article and Find Full Text PDFTwo dimensional (2D) materials have offered unique electrical, chemical, mechanical and physical properties over the past decade owing to their ultrathin, flexible, and multilayer structure. These layered materials are being used in numerous electronic devices for various applications, and this review will specifically focus on the resistive random access memories (RRAMs) based on 2D materials and their nanocomposites. This study presents the device structures, conduction mechanisms, resistive switching properties, fabrication technologies, challenges and future aspects of 2D-materials-based RRAMs.
View Article and Find Full Text PDFThis method solves the problem of fabrication of flexible elastic conductive thin film samples for thermoelectric applications. For this purpose, rubbing in technology at room temperature condition has been used which is simple, economical and reliable. As a result, elastic thermo-electric cells have been fabricated that can be used for low power applications and for measurement of the gradient of temperature in industry, medicine and in instrumentation as well.
View Article and Find Full Text PDFSci Total Environ
September 2013
Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant.
View Article and Find Full Text PDFIn this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique.
View Article and Find Full Text PDF