Publications by authors named "Khareedu Venkateswara Rao"

OsMADS29 (M29) is a seed-specific MADS-box transcription factor involved in programmed cell death of nucellar tissue and maintaining auxin:cytokinin homeostasis. It affects embryo and endosperm development and starch filling during seed development in rice. Its expression seems to be tightly regulated by developmental, spatial, and temporal cues; however, and -regulatory factors that affect its expression are largely unknown.

View Article and Find Full Text PDF

World-wide crop productivity is highly impacted by various extreme environmental conditions. In the present investigation, activation tagged (AT) line A10-Ds-RFP6 of rice endowed with improved agronomic attributes was tested for its tolerance ability against drought and salinity stress conditions as well as identification of genes associated with these traits. Under both drought and salinity stress conditions, A10-Ds-RFP6 line exhibited increased seed germination rates and improved plant growth characteristics at seedling, vegetative and reproductive stages as compared to wild-type (WT) plants.

View Article and Find Full Text PDF

Genetically engineered onion expressing codon-optimized VvSTS1 gene accumulated stilbenes and extended life span in yeast and can serve as potential nutraceutical. Resveratrol (RV) is a natural polyphenolic compound found in certain plant species including grapes. RV is well known for its nutraceutical properties and to assuage several disease conditions.

View Article and Find Full Text PDF

Diverse abiotic stresses constitute one of the major factors which adversely affect the normal plant growth and development which results worldwide in decreased agricultural productivity. At present, utilization of new molecular tools to achieve improved stress tolerance and increased crop productivity is highly desirable. Abiotic stress in plants induces expression of a wide range of genes like transcription factors, defense related genes and so on, and the products of these genes are important in combating stress conditions.

View Article and Find Full Text PDF

To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH).

View Article and Find Full Text PDF

We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12.

View Article and Find Full Text PDF

Transgenic rice expressing pigeonpea Cc CDR conferred high-level tolerance to different abiotic stresses. The multiple stress tolerance observed in CcCDR -transgenic lines is attributed to the modulation of ABA-dependent and-independent signalling-pathway genes. Stable transgenic plants expressing Cajanus cajan cold and drought regulatory protein encoding gene (CcCDR), under the control of CaMV35S and rd29A promoters, have been generated in indica rice.

View Article and Find Full Text PDF

In the present investigation, an inducible male-sterility system has been developed in the rice. In order to introduce inducible male-sterility, the coding region of l-ornithinase (argE) gene of E. coli was fused to the Oryza sativa indica pollen allergen (OSIPA) promoter sequence which is known to function specifically in the pollen grains.

View Article and Find Full Text PDF

In this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth.

View Article and Find Full Text PDF

Andrographis nallamalayana is being widely used as tribal medicine in the treatment of leucoderma and mouth ulcers. Chemical profiling of methanolic extract of the whole plant (PE), using GC-MS and LC-MS, revealed the presence of compounds viz. α-tocopherol, β-sitosterol, tetradecanoic acid, monostearin, flavones/flavanones and their glycosides, chromones, etc.

View Article and Find Full Text PDF

A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content.

View Article and Find Full Text PDF

Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1) has been introduced into pearl millet male fertility restorer line ICMP451 by Agrobacterium tumefaciens-mediated genetic transformation. Transgenic pearl millet plants were regenerated from the phosphinothricin-resistant calli obtained after co-cultivation with A. tumefaciens strain LBA4404 harbouring Ti plasmid pSB111-bar-BjNPR1.

View Article and Find Full Text PDF

Different transgenic crop plants, developed with δ-endotoxins of Bacillus thuringiensis (Bt) and mannose-specific plant lectins, exhibited significant protection against chewing and sucking insects. In the present study, a synthetic gene (cry-asal) encoding the fusion-protein having 488 amino acids, comprising DI and DII domains from Bt Cry1Ac and Allium sativum agglutinin (ASAL), was cloned and expressed in Escherichia coli. Ligand blot analysis disclosed that the fusion-protein could bind to more number of receptors of brush border membrane vesicle (BBMV) proteins of Helicoverpa armigera.

View Article and Find Full Text PDF

Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton.

View Article and Find Full Text PDF

A genetically engineered strain of Pichia pastoris expressing S-adenosylmethionine synthetase gene from Saccharomyces cerevisiae under the control of AOX 1 promoter was developed. Induction of recombinant strain with 1% methanol resulted in the expression of SAM2 protein of ~ 42 kDa, whereas control GS115 showed no such band. Further, the recombinant strain showed 17-fold higher enzyme activity over control.

View Article and Find Full Text PDF

Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1) has been introduced into commercial indica rice varieties by Agrobacterium-mediated genetic transformation. Transgenic rice plants were regenerated from the phosphinothricin-resistant calli obtained after co-cultivation with Agrobacterium strain LBA4404 harbouring Ti plasmid pSB111-bar-BjNPR1. Molecular analyses confirmed the stable integration and expression of BjNPR1 in various transgenic rice lines.

View Article and Find Full Text PDF

Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz.

View Article and Find Full Text PDF

Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome.

View Article and Find Full Text PDF

The present study primarily deals with the identification of substrate-binding site and elucidation of catalytic residue of the phytase from Bacillus sp. (Genbank Accession No. EF536824) employing molecular modeling and site-directed mutagenesis.

View Article and Find Full Text PDF

Genetic engineering of Bacillus thuringiensis (Bt) Cry proteins has resulted in the synthesis of various novel toxin proteins with enhanced insecticidal activity and specificity towards different insect pests. In this study, a fusion protein consisting of the DI-DII domains of Cry1Ac and garlic lectin (ASAL) has been designed in silico by replacing the DIII domain of Cry1Ac with ASAL. The binding interface between the DI-DII domains of Cry1Ac and lectin has been identified using protein-protein docking studies.

View Article and Find Full Text PDF

A full-length cDNA clone of pigeonpea (Cajanus cajan L.) encoding cyclophilin (CcCYP) has been isolated from the cDNA library of plants subjected to drought stress. Amino acid sequence of CcCYP disclosed similarity with that of single-domain cytosolic cyclophilins of various organisms.

View Article and Find Full Text PDF

Pigeonpea, a major grain legume crop with remarkable drought tolerance traits, has been used for the isolation of stress-responsive genes. Herein, we report generation of ESTs, transcript profiles of selected genes and validation of candidate genes obtained from the subtracted cDNA libraries of pigeonpea plants subjected to PEG/water-deficit stress conditions. Cluster analysis of 124 selected ESTs yielded 75 high-quality ESTs.

View Article and Find Full Text PDF

A hybrid-proline-rich protein encoding gene (CcHyPRP) has been isolated and characterized, for the first time, from the subtracted cDNA library of pigeonpea (Cajanus cajan L.) plants subjected to drought stress. Functionality of CcHyPRP has been validated for abiotic stress tolerance using the heterologous yeast and Arabidopsis systems.

View Article and Find Full Text PDF

Background: Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method.

View Article and Find Full Text PDF