Multiomics technologies with single-cell and spatial resolution make it possible to measure thousands of features across millions of cells. However, visual analysis of high-dimensional transcriptomic, proteomic, genome-mapped and imaging data types simultaneously remains a challenge. Here we describe Vitessce, an interactive web-based visualization framework for exploration of multimodal and spatially resolved single-cell data.
View Article and Find Full Text PDFIn situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections.
View Article and Find Full Text PDFNeuroblastoma is an aggressive pediatric cancer with a high rate of metastasis to the BM. Despite intensive treatments including high-dose chemotherapy, the overall survival rate for children with metastatic neuroblastoma remains dismal. Understanding the cellular and molecular mechanisms of the metastatic tumor microenvironment is crucial for developing new therapies and improving clinical outcomes.
View Article and Find Full Text PDFBackground: Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly morbid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stromal microenvironments, has not been well-defined, hindering progress towards identification of therapeutic targets.
View Article and Find Full Text PDFTargeted spatial transcriptomics hold particular promise in analyzing complex tissues. Most such methods, however, measure only a limited panel of transcripts, which need to be selected in advance to inform on the cell types or processes being studied. A limitation of existing gene selection methods is their reliance on scRNA-seq data, ignoring platform effects between technologies.
View Article and Find Full Text PDFGenetic mutations accumulate in an organism's body throughout its lifetime. While somatic single-nucleotide variants have been well characterized in the human body, the patterns and consequences of large chromosomal alterations in normal tissues remain largely unknown. Here, we present a pan-tissue survey of mosaic chromosomal alterations (mCAs) in 948 healthy individuals from the Genotype-Tissue Expression project, augmenting RNA-based allelic imbalance estimation with haplotype phasing.
View Article and Find Full Text PDFTransgenic tobacco plants overexpressing the choline oxidase gene from showed an increase in resistance at the level of primary and secondary biosynthesis of metabolites, removing the damage characteristic of salinity and stabilizing the condition of plants. We used 200 mM NaCl, which inhibits the growth of tobacco plants at all stages of development. Leaves of transgenic and wild-type (WT) plants were used for biochemical, cytological and molecular biological analysis.
View Article and Find Full Text PDFUnlike many other hematologic malignancies, Richter syndrome (RS), an aggressive B cell lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-1 blockade. To discover the determinants of response, we analyze single-cell transcriptome data generated from 17 bone marrow samples longitudinally collected from 6 patients with RS. Response is associated with intermediate exhausted CD8 effector/effector memory T cells marked by high expression of the transcription factor ZNF683, determined to be evolving from stem-like memory cells and divergent from terminally exhausted cells.
View Article and Find Full Text PDFIn situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. Recently there has been a surge of multiplexed RNA in situ techniques but their application to human tissues and clinical biopsies has been limited due to their large size, general lower tissue quality and high background autofluorescence. Here we report DART-FISH, a versatile padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections at cellular resolution.
View Article and Find Full Text PDFUnderstanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations.
View Article and Find Full Text PDFTargeted spatial transcriptomics hold particular promise in analysis of complex tissues. Most such methods, however, measure only a limited panel of transcripts, which need to be selected in advance to inform on the cell types or processes being studied. A limitation of existing gene selection methods is that they rely on scRNA-seq data, ignoring platform effects between technologies.
View Article and Find Full Text PDFThe treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls.
View Article and Find Full Text PDFThe glandular stomach is composed of two regenerative compartments termed corpus and antrum, and our understanding of the transcriptional networks that maintain these tissues is incomplete. Here we show that cell types with equivalent functional roles in the corpus and antrum share similar transcriptional states including the poorly characterized stem cells of the isthmus region. To further study the isthmus, we developed a monolayer two-dimensional (2D) culture system that is continually maintained by Wnt-responsive isthmus-like cells capable of differentiating into several gastric cell types.
View Article and Find Full Text PDFTissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells.
View Article and Find Full Text PDFSummary: scFates provides an extensive toolset for the analysis of dynamic trajectories comprising tree learning, feature association testing, branch differential expression and with a focus on cell biasing and fate splits at the level of bifurcations. It is meant to be fully integrated into the scanpy ecosystem for seamless analysis of trajectories from single-cell data of various modalities (e.g.
View Article and Find Full Text PDFThe reduction in plant height caused by mutations in or genes in combination with day-length-independent early flowering associated with the gene were the main factors of the drastic yield increase in bread wheat in the 1960s. Increasing nitrogen use efficiency as well as maintaining high yields under conditions of global climate change are the modern goals of wheat breeding. The glutamine synthetase (GS) enzyme plays a key role in ammonium assimilation in plants.
View Article and Find Full Text PDFSchizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry.
View Article and Find Full Text PDFGenome instability and aberrant alterations of transcriptional programs both play important roles in cancer. Single-cell RNA sequencing (scRNA-seq) has the potential to investigate both genetic and nongenetic sources of tumor heterogeneity in a single assay. Here we present a computational method, Numbat, that integrates haplotype information obtained from population-based phasing with allele and expression signals to enhance detection of copy number variations from scRNA-seq.
View Article and Find Full Text PDFUnderstanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB.
View Article and Find Full Text PDFBackground & Aims: Myeloid cells are key regulators of cirrhosis, a major cause of mortality worldwide. Because stromal cells can modulate the functionality of myeloid cells in vitro, targeting stromal-myeloid interactions has become an attractive potential therapeutic strategy. We aimed to investigate how human liver stromal cells impact myeloid cell properties and to understand the utility of a stromal-myeloid coculture system to study these interactions in the context of cirrhosis.
View Article and Find Full Text PDF