Lenalidomide, a derivative of thalidomide, is an immunomodulatory agent introduced in 2004 for the treatment of multiple myeloma in combination with dexamethasone. It is also indicated for the treatment of myelodysplastic syndrome and is currently under investigative use for metastatic melanoma. We present a case of neutrophilic dermatosis involving predominantly the lower extremities in a patient receiving lenalidomide therapy for multiple myeloma.
View Article and Find Full Text PDFThe HIV-1 Vpr protein is a viral accessory protein that plays a number of important roles during HIV infection. The activities of Vpr are numerous and include the induction of apoptosis, the modulation of cell cycle arrest, as well as control of viral transcription. Study of HIV clones lacking Vpr in vitro and analysis of HIV variants isolated from long-term nonprogressors in vivo highlight the importance of Vpr for viral replication as well as immune suppression and cell death.
View Article and Find Full Text PDFPeptides that are capable of traversing the cell membrane, via protein transduction domains (PTDs), are attractive either directly as drugs or indirectly as carriers for the delivery of therapeutic molecules. For example, an HIV-1 Tat derived peptide has successfully delivered a large variety of "cargoes" including proteins, peptides and nucleic acids into cells when conjugate to the PTD. There also exists other naturally occurring membrane permeable peptides which have potential as PTDs.
View Article and Find Full Text PDFChronic viral infection is characterized by the functional impairment of virus-specific T-cell responses. Recent evidence has suggested that the inhibitory receptor programmed death 1 (PD-1) is specifically upregulated on antigen-specific T cells during various chronic viral infections. Indeed, it has been reported that human immunodeficiency virus (HIV)-specific T cells express elevated levels of PD-1 and that this expression correlates with the viral load and inversely with CD4(+) T-cell counts.
View Article and Find Full Text PDFThe Vpr protein of HIV-1 functions as a vital accessory gene by regulating various cellular functions, including cell differentiation, apoptosis, nuclear factor of kappaB (NF-kappaB) suppression and cell-cycle arrest of the host cell. Several reports have indicated that Vpr complexes with the glucocorticoid receptor (GR), but it remains unclear whether the GR pathway is required for Vpr to function. Here, we report that Vpr uses the GR pathway as a recruitment vehicle for the NF-kappaB co-activating protein, poly(ADP-ribose) polymerase-1 (PARP-1).
View Article and Find Full Text PDFThe HIV-1 accessory protein Vpr exhibits many interesting features related to macrophage and T cell biology. As a viral protein or as a soluble molecule it can suppress immune cell activation and cytokine production in vitro in part by targeted inhibition of NF-kappaB. In this regard we sought to test its effects in vivo on an NF-kappaB-dependent immune pathway.
View Article and Find Full Text PDFHuman immunodeficiency virus-1 (HIV-1) Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through in vitro modulation of several host cell functions. Vpr modulates cellular proliferation, cell differentiation, apoptosis and host cell transcription in a manner that involves the glucocorticoid pathway. To better understand the role of HIV-1 Vpr in host gene expression, approximately 9600 cellular RNA transcripts were assessed for their modulation in primary APC after treatment with a bioactive recombinant Vpr (rVpr) by DNA micro-array.
View Article and Find Full Text PDFNew and effective approaches for inflammatory diseases based on novel mechanisms of action are needed. One potential source of anti-inflammatory drugs exists among viruses. Viruses have evolved to infect, replicate within, and kill human cells through diverse mechanisms.
View Article and Find Full Text PDF