Plast Reconstr Surg Glob Open
March 2021
Biochim Biophys Acta
November 2009
FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped alpha-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy enables determination of membrane protein structures in lipid environments, such as micelles and bilayers. This chapter outlines the steps for membrane-protein structure determination using solution NMR with micelle samples, and solid-state NMR with oriented lipid-bilayer samples. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from gamma and CHIF, two membrane proteins that function as regulatory subunits of the Na+- and K+-ATPase.
View Article and Find Full Text PDFDetermining the atomic resolution structures of membrane proteins is of particular interest in contemporary structural biology. Helical membrane proteins constitute one-third of the expressed proteins encoded in a genome, many drugs have membrane-bound proteins as their receptors, and mutations in membrane proteins result in human diseases. Although integral membrane proteins provide daunting technical challenges for all methods of protein structure determination, nuclear magnetic resonance (NMR) spectroscopy can be an extremely versatile and powerful method for determining their structures and characterizing their dynamics, in lipid environments that closely mimic the cell membranes.
View Article and Find Full Text PDFThe FXYD family proteins are auxiliary subunits of the Na,K-ATPase, expressed primarily in tissues that specialize in fluid or solute transport, or that are electrically excitable. These proteins range in size from about 60 to 160 amino acid residues, and share a core homology of 35 amino acid residues in and around a single transmembrane segment. Despite their relatively small sizes, they are all encoded by genes with six to nine small exons.
View Article and Find Full Text PDFAn Escherichia coli plasmid vector for the high-level expression of hydrophobic membrane proteins is described. The plasmid, pBCL, directs the expression of a target polypeptide fused to the C terminus of a mutant form of the anti-apoptotic Bcl-2 family protein, Bcl-XL, where the hydrophobic C terminus has been deleted, and Met residues have been mutated to Leu to facilitate CNBr cleavage after a single Met inserted at the beginning of the target sequence. Fusion protein expression is in inclusion bodies, simplifying the protein purification steps.
View Article and Find Full Text PDF