Publications by authors named "Khandekar Sanjay"

Primary non-Hodgkin lymphoma of breast is a rare pathology, representing 0.5% of malignant breast tumors. We report a case of 52 year old female presenting with a large painful mass in left breast with ipsilateral axillary lymph node diagnosed on fine needle aspiration cytology as non-Hodgkin's lymphoma.

View Article and Find Full Text PDF

Recent studies using known Rho-associated kinase isoform 1 (ROCK1) inhibitors along with cellular and molecular biology data have revealed a pivotal role of this enzyme in many aspects of cardiovascular function. Here we report a series of ROCK1 inhibitors which were originally derived from a dihydropyrimidinone core 1. Our efforts focused on the optimization of dihydropyrimidine 2, which resulted in the identification of a series of dihydropyrimidines with improved pharmacokinetics and P450 properties.

View Article and Find Full Text PDF

Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead.

View Article and Find Full Text PDF

The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

View Article and Find Full Text PDF

A 40 year female, presented with the complaints of spontaneous, sticky, blood stained discharge from the nipple of the left breast since 6 months. On examination there was no lump palpable in either breast. Cytology of the nipple discharge (ND) showed scanty cellularity consisting of tight papillary clusters of ductal cells in a hemorrhagic and inflammatory background.

View Article and Find Full Text PDF

Most of the kinase inhibitors that are approved for therapeutic uses or that are undergoing clinical trials are directed toward the adenosine triphosphate (ATP) binding site of protein kinases. 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) is an activitybased probe (ABP) that covalently modifies a conserved lysine present in the nucleotide binding site of most kinases. Here the authors describe synthesis of FSBA derivatives, 2'-biotinyl-FSBA and 3'-biotinyl-FSBA as kinase ABPs, and delineate a Western blot method to screen and validate ATP competitive protein kinase inhibitors using biotinyl-FSBA as a nonselective activity-based probe for protein kinases.

View Article and Find Full Text PDF

Increased Rho kinase (ROCK) activity contributes to smooth muscle contraction and regulates blood pressure homeostasis. We hypothesized that potent and selective ROCK inhibitors with novel structural motifs would help elucidate the functional role of ROCK and further explore the therapeutic potential of ROCK inhibition for hypertension. In this article, we characterized two aminofurazan-based inhibitors, GSK269962A [N-(3-{[2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-1H-imidazo[4, 5-c]pyridin-6-yl]oxy}phenyl)-4-{[2-(4-morpholinyl)ethyl]-oxy}benzamide] and SB-7720770-B [4-(7-{[(3S)-3-amino-1-pyrrolidinyl]carbonyl}-1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-amine], as members of a novel class of compounds that potently inhibit ROCK enzymatic activity.

View Article and Find Full Text PDF

Rho Kinase I (ROCK I) is a serine/threonine kinase that is involved in diverse cellular signaling. To further understand the physiological role of ROCK I and to identify and develop potent and selective inhibitors of ROCK I, we have overexpressed and purified a constitutively active dimeric human ROCK I (3-543) kinase domain using the Sf9-baculovirus expression system. In addition, using a limited proteolysis technique, we have identified a minimal functional subdomain of ROCK I that can be used in crystallization studies.

View Article and Find Full Text PDF

The currently approved kinase inhibitors for therapeutic uses and a number of kinase inhibitors that are undergoing clinical trials are directed toward the adenosine triphosphate (ATP) binding site of protein kinases. The 5'-fluorosulfonylbenzoyl 5'-adenosine (FSBA) is an ATP-affinity reagent that covalently modifies a conserved lysine present in the nucleotide-binding site of most kinases. The authors have developed a liquid chromatography/mass spectrometry-based method to monitor binding of ATP competitive protein kinase inhibitors using FSBA as a nonselective activity-based probe for protein kinases.

View Article and Find Full Text PDF

beta-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 A resolution. Although the overall structure of S.

View Article and Find Full Text PDF

The nonstructural protein 3 (NS3) of hepatitis C virus contains a protease domain at its amino terminus and RNA helicase domain at its carboxyl terminus. To identify optimal NS3 protein for developing screening assays, we expressed full-length NS3 protease/helicase and helicase domains from both HCV type 1a (H77 strain) and 1b (Con1 strain), using either E. coli or baculovirus expression systems.

View Article and Find Full Text PDF

The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) encodes an RNA-dependent RNA polymerase (RdRp) which is essential for viral replication. NS5B expression in bacteria generated 20- to 50-fold lower yield and 100-fold less product per mol of enzyme for gentoype 1a RdRp than type 1b. Further, unlike type 1b RdRp, type 1a enzyme failed to exhibit cooperative properties in the assays described herein.

View Article and Find Full Text PDF

As a result of increasing drug resistance in pathogenic bacteria, there is a critical need for novel broad-spectrum antibacterial agents. As fatty acid synthesis (FAS) in bacteria is an essential process for cell survival, the enzymes involved in the FAS pathway have emerged as promising targets for antimicrobial agents. Several lines of evidence have indicated that bacterial condensing enzymes are central to the initiation and elongation steps in bacterial fatty acid synthesis and play a pivotal role in the regulation of the entire fatty acid synthesis pathway.

View Article and Find Full Text PDF

The first cocrystal structure of a bacterial FabH condensing enzyme and a small molecule inhibitor is reported. The inhibitor was obtained by rational modification of a high throughput screening lead with the aid of a S. pneumoniae FabH homology model.

View Article and Find Full Text PDF

We functionally analyzed the role of metal ions in RNA-dependent RNA synthesis by three recombinant RNA-dependent RNA polymerases (RdRps) from GB virus-B (GBV), bovine viral diarrhea virus (BVDV), and hepatitis C virus (HCV), with emphasis on the HCV RdRp. Using templates capable of both de novo initiation and primer extension and RdRps purified in the absence of metal, we found that only reactions with exogenously provided Mg(2+) and Mn(2+) gave rise to significant amounts of synthesis. Mg(2+) and Mn(2+) affected the mode of RNA synthesis by the three RdRps.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B.

View Article and Find Full Text PDF

We have recently reported the identification of four novel members of the interleukin-1 (IL-1) family which we designated as IL-1 homologue 1-4 (IL-1H1-4). These proteins exhibit significant sequence homology to other members of the IL-1 family. Of these homologues, only IL-1H4 (renamed IL-1F7b) was predicted to contain a propeptide domain and a caspase cleavage site.

View Article and Find Full Text PDF