Inverse spatially offset Raman spectroscopy (I-SORS) seeks to interrogate deep inside a Raman-active, layered, diffusely scattering sample. It makes a collimated laser beam incident onto the sample surface in the form of concentric illumination rings (of varying radii) from whose center the back-scattered Raman signal is collected for detection. Since formation of illumination rings of different sizes requires an axicon to be moved along the axis of the collimated laser beam and axicons below a certain minimum size (~1 inch) are not readily available, this classical configuration incorporating an axicon cannot be used for designing a compact I-SORS probe of narrower diameter.
View Article and Find Full Text PDFThe broad range of applications of spatially-offset Raman spectroscopy (SORS) were found to involve samples having only marginal differences in Raman cross-sections between the surface and subsurface targets. We report the results of a feasibility study to evaluate the potential of the approach to identify the presence of a very low Raman-active turbid sample placed inside a highly Raman-active diffusely scattering matrix. Paraffin sandwiched tissue blocks prepared by embedding slices of chicken muscle tissue into solid paraffin blocks were employed as representative samples for the study.
View Article and Find Full Text PDF