Publications by authors named "Khamis Essa"

Labour commencement diagnosis is still challenging in obstetrics. The majority of scientific techniques that were used to determine labour are costly and require a professional healthcare personnel to be carried out. Hence, in this work, an experiment was conducted using a 3D-printed 50% scale model of the abdomen of an average 40-week pregnant woman.

View Article and Find Full Text PDF

Bone is a complex connective tissue that serves as mechanical and structural support for the human body. Bones' fractures are common, and the healing process is physiologically complex and involves both mechanical and biological aspects. Tissue engineering of bone scaffolds holds great promise for the future treatment of bone injuries.

View Article and Find Full Text PDF

Additive Manufacturing (AM) enables the generation of complex geometries and controlled internal cavities that are so interesting for the biomedical industry due to the benefits they provide in terms of osseointegration and bone growth. These technologies enable the manufacturing of the so-called lattice structures that are cells with different geometries and internal pores joint together for the formation of scaffold-type structures. In this context, the present paper analyses the feasibility of using diamond-type lattice structures and topology optimisation for the re-design of a dental implant.

View Article and Find Full Text PDF

Recent progress in additive manufacturing, also known as 3D printing, has offered several benefits, including high geometrical freedom and the ability to create bioinspired structures with intricate details. Mantis shrimp can scrape the shells of prey molluscs with its hammer-shaped stick, while beetles have highly adapted forewings that are lightweight, tough, and strong. This paper introduces a design approach for bioinspired lattice structures by mimicking the internal microstructures of a beetle's forewing, a mantis shrimp's shell, and a mantis shrimp's dactyl club, with improved mechanical properties.

View Article and Find Full Text PDF

The Ti6Al4V alloy has many advantages, such as being lightweight, formal, and resistant to corrosion. This makes it highly desirable for various applications, especially in the aerospace industry. Laser Powder Bed Fusion (LPBF) is a technique that allows for the production of detailed and unique parts with great flexibility in design.

View Article and Find Full Text PDF

Carbon-fibre-reinforced plastic (CFRP) is increasingly being used in various applications including aerospace, automotive, wind energy, sports, and robotics, which makes the precision modelling of its machining operations a critical research area. However, the classic finite element modelling (FEM) approach has limitations in capturing the complexity of machining, particularly with regard to the interaction between the fibre-matrix interface and the cutting edge. To overcome this limitation, a hybrid approach that integrates smoothed particle hydrodynamics (SPHs) with FEM was developed and tested in this study.

View Article and Find Full Text PDF

Fused Deposition Modelling (FDM) 3D printers have gained significant popularity in the pharmaceutical and biomedical industries. In this study, a new biomaterial filament was developed by preparing a polylactic acid (PLA)/calcium peroxide (CPO) composite using wet solution mixing and extrusion. The content of CPO varied from 3% to 24% wt.

View Article and Find Full Text PDF

This study presents a thorough experimental investigation utilising the design of experiments and analysis of variance (ANOVA) to examine the impact of machining process parameters on chip formation mechanisms, machining forces, workpiece surface integrity, and damage resulting from the orthogonal cutting of unidirectional CFRP. The study identified the mechanisms behind chip formation and found it to significantly impact the workpiece orientation of fibre and the tool's cutting angle, resulting in increased fibre bounceback at larger fibre orientation angles and when using smaller rake angle tools. Increasing the depth of cut and fibre orientation angle results in an increased damage depth, while using higher rake angles reduces it.

View Article and Find Full Text PDF

The latest advancements in bone scaffold technology have introduced novel biomaterials that have the ability to generate oxygen when implanted, improving cell viability and tissue maturation. In this paper, we present a new oxygen-generating polylactic acid (PLA)/calcium peroxide (CPO) composite filament that can be used in 3D printing scaffolds. The composite material was prepared using a wet solution mixing method, followed by drying and hot melting extrusion.

View Article and Find Full Text PDF

The rolling process of rebar steel production is one of the well established manufacturing processes; however, it should be subjected to revision and redesign for productivity enhancement and power reduction throughout the slit rolling process. In this work, slitting passes are extensively reviewed and modified for the attainment of better rolling stability and reduction in power consumption. The study has been applied for grade B400B-R Egyptian rebar steel, which is equivalent to steel grade ASTM A615M, Grade 40.

View Article and Find Full Text PDF

Fused deposition modelling (FDM) is an additive manufacturing technology used to create functional and complex geometries directly from computer-generated models. This technique can be utilised to generate cellular structures with controllable pore size, pore shape, and porosity. Cellular structures are fundamental in orthopaedics scaffolds because of its low elastic modulus, high compressive strength, and adequate cell accommodation spaces.

View Article and Find Full Text PDF

This work aimed to study one of the most important challenges in orthopaedic implantations, known as stress shielding of total shoulder implants. This problem arises from the elastic modulus mismatch between the implant and the surrounding tissue, and can result in bone resorption and implant loosening. This objective was addressed by designing and optimising a cellular-based lattice-structured implant to control the stiffness of a humeral implant stem used in shoulder implant applications.

View Article and Find Full Text PDF

Measuring pH has become a major key for determining health conditions, and food safety. The traditional pH assessment approaches are costly and offer low sensitivity. Here, a novel pH sensor based on a pH-responsive hydrogel has been developed.

View Article and Find Full Text PDF

Single-point incremental forming (SPIF) is a flexible technology that can form a wide range of sheet metal products without the need for using punch and die sets. As a relatively cheap and die-less process, this technology is preferable for small and medium customised production. However, the SPIF technology has drawbacks, such as the geometrical inaccuracy and the thickness uniformity of the shaped part.

View Article and Find Full Text PDF

Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy.

View Article and Find Full Text PDF

There is an increasing demand for flexible, relatively inexpensive manufacturing techniques that can accommodate frequent changes to part design and production technologies, especially when limited batch sizes are required. Reconfigurable multi-point forming (MPF) is an advanced manufacturing technique which uses a reconfigurable die consisting of a set of moveable pins to shape sheet metal parts easily. This study investigates the use of a novel variable thickness waffle-type elastic cushion and a variable punch-loading profile to either eliminate or minimise defects associated with MPF, namely wrinkling, thickness variation, shape deviation, and dimpling.

View Article and Find Full Text PDF

Auxetic structures have attracted attention in energy absorption applications owing to their improved shear modulus and enhanced resistance to indentation. On the other hand, four-dimensional (4D) printing is an emerging technology that is capable of 3D printing smart materials with additional functionality. This paper introduces the development of a NiTi negative-Poisson's-ratio structure with superelasticity/shape memory capabilities for improved ballistic applications.

View Article and Find Full Text PDF

The study on CM247LC used the traditional approach for Near-Netshape Hot Isostatic Pressing (NNSHIP) with sacrificial low carbon steel tooling, which was built using Selective Laser Melting (SLM), to produce a shaped CM247LC blisk. The assessment of the microstructure focused on both the exterior components in order to determine the depth of the Fe-diffusion layer and on the interior microstructure. Samples were extracted from the Hot Isostatic Pressed (HIPped) components for tensile testing at both room and elevated temperatures.

View Article and Find Full Text PDF

Recently, there are growing demands in manufacturing of net shape micro parts for wide range of applications due to the increasing interest in miniaturization. In this paper, the fabrication of tetragonal phase zirconia/alumina (YSZ/Al₂O₃) nanocomposite micro-parts with high quality is presented. The fabrication process is based on soft lithography and colloidal powder dispersion.

View Article and Find Full Text PDF

Selective laser melting (SLM) is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D) metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes.

View Article and Find Full Text PDF

Porous biomedical implants hold great potential in preventing stress shielding while improving bone osseointegration and regeneration. In this paper, a novel approach is introduced to control the porosity of 316L stainless steel implants by using canister-free hot isostatic pressing (CF-HIPing). The proposed approach uses cold isostatic pressing (CIPing) to generate powder compacts with various particle sizes, followed by CF-HIPing.

View Article and Find Full Text PDF