Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many scenarios.
View Article and Find Full Text PDFThere exists a growing interest from the clinical practice research communities in the development of methods to automate HEp-2 stained cells classification procedure from histopathological images. Challenges faced by these methods include variations in cell densities and cell patterns, overfitting of features, large-scale data volume and stained cells. In this paper, a multi-class multilayer perceptron technique is adapted by adding a new hidden layer to calculate the variation in the mean, scale, kurtosis and skewness of higher order spectra features of the cell shape information.
View Article and Find Full Text PDFSegmentation of white blood cells in digital haematology microscope images represents one of the major tools in the diagnosis and evaluation of blood disorders. Pathological examinations are being the gold standard in many haematology and histophathology, and also play a key role in the diagnosis of diseases. In clinical diagnosis, white blood cells are analysed by pathologists from peripheral blood smears samples of patients.
View Article and Find Full Text PDFThe segmentation of white blood cells and their nuclei is still difficult and challenging for many reasons, including the differences in their colour, shape, background and staining techniques, the overlapping of cells, and changing cell topologies. This paper shows how these challenges can be addressed by using level set forces via edge-based geometric active contours. In this work, three level set forces-based (curvature, normal direction, and vector field) are comprehensively studied in the context of the problem of segmenting white blood cell nuclei based on geometric flows.
View Article and Find Full Text PDF