The technique of atomic force microscopy (AFM) bending tests of a suspended nano-object (scroll, tube, rod) makes it possible to calculate the Young's modulus of the material it is made of based on experimental data. However, the calculation results involve a large error due to uncertain conditions (console or bridge) of fixing the test object. One of the ways to reduce this error is based on the theoretical consideration of consoles or bridges as beams with one or two ends resting on Winkler elastic foundations.
View Article and Find Full Text PDFA group of phyllosilicate nanoscrolls conjoins several hydrosilicate layered compounds with a size mismatch between octahedral and tetrahedral sheets. Among them, synthetic MgSiO(OH) chrysotile nanoscrolls (obtained via the hydrothermal method) possess high thermal stability and mechanical properties, making them prospective composite materials fillers. However, accurate determination of these nano-objects with Young's modulus remains challenging.
View Article and Find Full Text PDFCan J Physiol Pharmacol
November 2020
In the primary sensory neuron, ouabain activates the dual mechanism that modulates the functional activity of Na1.8 channels. Ouabain at endogenous concentrations (EO) triggers two different signaling cascades, in which the Na,K-ATPase/Src complex is the EO target and the signal transducer.
View Article and Find Full Text PDFThe Young's modulus of 10-12-day-old chick embryos' sensory neurons cultivated in dissociated cell culture was measured using a PeakForce Quantitative Nanomechanical Mapping atomic force microscopy. The native cells were tested in control experiments and after application of ouabain. At low "endogenous" concentration of 10⁻¹⁰ M, ouabain tended to increase the rigidity of sensory neurons.
View Article and Find Full Text PDF