Publications by authors named "Khalique H"

Sugarcane bagasse (SB) a renewable and abundant source of rich fermentable sugars has been reported extensively to produce microbial enzymes and other valuable products. However, most of the SB-based processes require its pretreatment which is an additional step incurring time and cost. In this study, fermentation of SB by bacterial strains without any pretreatment was carried out to obtain crude cellulase preparation.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation.

View Article and Find Full Text PDF

Background: Programmed death-ligand 1 (PD-L1) is an important immune checkpoint protein that can be regarded as a pan-cancer antigen expressed by multiple different cell types within the tumor. While antagonizing PD-L1 is well known to relieve PD-1/PD-L1-mediated T cell suppression, here we have combined this approach with an immunotherapy strategy to target T cell cytotoxicity directly toward PD-L1-expressing cells. We developed a bi-specific T cell engager (BiTE) crosslinking PD-L1 and CD3ε and demonstrated targeted cytotoxicity using a clinically relevant patient-derived ascites model.

View Article and Find Full Text PDF

The natural killer group 2 member D (NKG2D) receptor and its family of NKG2D ligands (NKG2DLs) are key components in the innate immune system, triggering NK, γδ and CD8 T cell-mediated immune responses. While surface NKG2DL are rarely found on healthy cells, expression is significantly increased in response to various types of cellular stress, viral infection, and tumour cell transformation. In order to evade immune-mediated cytotoxicity, both pathogenic viruses and cancer cells have evolved various mechanisms of subverting immune defences and preventing NKG2DL expression.

View Article and Find Full Text PDF

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells.

View Article and Find Full Text PDF

Background: Tumour-associated macrophages (TAMs) are often implicated in cancer progression but can also exert anti-tumour activities. Selective eradication of cancer-promoting (M2-like) TAM subsets is a highly sought-after goal. Here, we have devised a novel strategy to achieve selective TAM depletion, involving the use of T cell engagers to direct endogenous T cell cytotoxicity towards specific M2-like TAMs.

View Article and Find Full Text PDF

The translational success of oncolytic virotherapies would benefit from the widespread use of clinically relevant ex vivo models. Malignant ascites, an accumulation of fluid in the peritoneum due to disseminated cancer, recapitulates many features of the tumor microenvironment, making it a valuable model for studying oncolytic virus activity. Here, we describe a method for the separation and storage of cellular and acellular components of malignant ascites, followed by flow cytometric characterization of the cellular fraction.

View Article and Find Full Text PDF

The 11th International Oncolytic Virus Conference (IOVC) was held from April 9-12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development-from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials.

View Article and Find Full Text PDF

Nonreplicative Herpes simplex virus type-1 (HSV-1) genomic vectors have already entered into clinical trials for neurological gene therapy thanks to their scalable growth in permissive cells. However, the small transgene capacity of this type of HSV-1 vectors currently used in the clinic represents an important limiting factor as a gene delivery system. To develop high-capacity nonreplicative genomic HSV-1 vectors, in this study we have characterized a series of multiply deleted mutants which we have constructed in bacterial artificial chromosomes (BACs), removing up to 24 kb of unstable or dispensable genomic sequences to allow insertion of transgenes up to this size.

View Article and Find Full Text PDF

Background: Although herpes simplex virus type 1 (HSV-1) has outstanding properties for gene delivery vectors and its genome is available in bacterial artificial chromosomes (BACs) for mutagenesis studies, one impediment is the presence of approximately 15.4 kb of DNA sequences that are duplicated in the HSV-1 genome, complicating vector construction and stability.

Methods: As a useful platform for building HSV-1 vectors, we have constructed a fully haploid HSV-1 genome BAC by deletion of one of these repeats, confirming that viral propagation in culture is not impaired.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease which currently has no cure. Research using rodent ALS models transgenic for mutant superoxide dismutase 1 (SOD1) has implicated that glial-neuronal interactions play a major role in the destruction of motor neurons, but the generality of this mechanism is not clear as SOD1 mutations only account for less than 2% of all ALS cases. Recently, this hypothesis was backed up by observation of similar effects using astrocytes derived from post-mortem spinal cord tissue of ALS patients which did not carry SOD1 mutations.

View Article and Find Full Text PDF

The majority of humans have been infected with Herpes Simplex Virus Type 1 (HSV-1) and harbor its viral DNA in the latent form within neurons for lifetime. This, combined with the absence of serious adverse effects due to HSV-1 derived vectors in clinical trials so far, highlight the potential to use this virus to develop neuronal gene transfer vectors which are transparent to the host, allowing the effects of the transgene to act without interference from the transfer system eg., for functional genomics in basic neuroscience or gene therapy of neurological disorders.

View Article and Find Full Text PDF

Background: Unicuspid aortic valve (UAV) anatomy leads to dysfunction of the valve in young individuals. We introduced a reconstructive technique of bicuspidizing the UAV. Initially we copied the typical asymmetry of a normal bicuspid aortic valve (BAV) (I), later we created a symmetric BAV (II).

View Article and Find Full Text PDF

Effective therapeutic interventions for injuries of the central nervous system such as spinal cord injury are still unavailable, having a great impact on the quality of life of victims and their families, as well as high costs in medical care. Animal models of spinal cord injury are costly, time-consuming and labor-intensive, making them unsuitable for screening large numbers of experimental conditions. Thus, culture models that recapitulate key aspects of neuronal changes in central nervous system injuries are needed to gain further understanding of the pathological and regenerative mechanisms involved, as well as to accelerate the screening of potential therapeutic agents.

View Article and Find Full Text PDF

The neuropathological abnormalities of human immunodeficiency virus (HIV)-1 patients abusing illicit drugs suggest extensive interactions between the two agents, thereby leading to increased rate of progression to neurodegeneration. The role of HIV-1 transactivating protein, Tat has been elucidated in mediating neuronal damage via apoptosis, a hallmark of HIV-associated dementia (HAD), however the underlying mechanisms involved in enhanced neurodegeneration by illicit drugs remain elusive. In this study, we demonstrated that morphine enhances HIV-Tat induced toxicity in human neurons and neuroblastoma cells.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) and viral proteins affect neuronal survival and neuron-glial cell interactions, which culminate in neurological disorders. HIV-1 infects regions of neurogenesis in human adult and pediatric brain. However, little is known about the effect of HIV-1 or viral proteins on the properties of human neural precursor cells (hNPCs), particularly neurogenesis, hence a detailed investigation on these lines is warranted.

View Article and Find Full Text PDF